Skip to main content

Generalized Lattices Express Parallel Distributed Concept Learning

  • Chapter
Computational Intelligence Based on Lattice Theory

Part of the book series: Studies in Computational Intelligence ((SCI,volume 67))

  • 576 Accesses

Summary. Concepts have been expressed mathematically as propositions in a distributive lattice. A more comprehensive formulation is that of a generalized lattice, or category, in which the concepts are related in hierarchical fashion by lattice-like links called concept morphisms. A concept morphism describes how an abstract concept can be used within a more specialized concept in more than one way as with “color”, which can appear in “apples” as either “red”, “yellow” or “green”. Further, “color” appears in “apples” because it appears in “red”, “yellow” or “green”, which in turn appear in “apples”, expressed via the composition of concept morphisms. The representation of such concept relationships in multi-regional neural networks can be expressed in category theory through the use of categories, commutative diagrams, functors, and natural trasformations. Additionally, categorical model theory expresses the possible worlds described by concepts. The analysis of morphisms between the possible worlds highlights the importance of reciprocal connections in neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Healy, M.J., Caudell, T.P. (2007). Generalized Lattices Express Parallel Distributed Concept Learning. In: Kaburlasos, V.G., Ritter, G.X. (eds) Computational Intelligence Based on Lattice Theory. Studies in Computational Intelligence, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72687-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72687-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72686-9

  • Online ISBN: 978-3-540-72687-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics