Skip to main content

Honeycomb Carbon Networks: Preparation, Structure, and Transport

  • Chapter
Self-Organized Morphology in Nanostructured Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 99))

  • 825 Accesses

Summary

Honeycomb patterns with a single cell diameter of about 2 µm have been fabricated via spreading a drop of the initial polymer solution on the surface of cooled distilled water and following the subsequent influence of the water vapor on the resulting polymer thin film. We introduce an advanced structuring model capable to describe the underlying physical mechanism. The electrical conductivity of nitrocellulose extending from insulator to metal behavior distinctly changes by orders of magnitude via vacuum heat treatment at temperatures ranging from 600 to 1,000° C. For the case of carbon nets, the conductivity of which is far beyond the metal-insulator transition, the specific resistivity ρ depends on T as ρ(T) ∝ T -b exp ([T 0/T]1/p) in the range from 4.2 to 295 K. In the low-temperature regime, a Coulomb gap in the density of states located near the Fermi energy level occurs, i.e., p = 2. At high temperatures, the pre-exponential part ρ(T) ∝ T -b dominates. In the intermediate temperature range, we disclose Mott’s hopping law with p = 3. The electrical field dependence of variable range hopping is examined in its region of validity by ln ρ(T) ∝ T -1/2. We demonstrate the electrical conductivity σ caused by thermally nonactivated charge carriers at high fields to comply with ln σ(E) ∝ E -1/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bitzer, Honeycomb Technology (Chapman & Hall, London, 1997)

    Google Scholar 

  2. J.E.G.J. Wijnnhoven, R.G. Los, Science 281, 802 (1998)

    Article  ADS  Google Scholar 

  3. S.A. Jenekhe, X.L. Chen, Science 283, 372 (1999)

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 12, 693 (2000)

    Article  CAS  Google Scholar 

  5. D.J. Norris, Yu.A. Vlasov, Adv. Mater. 13, 371 (2000)

    Article  Google Scholar 

  6. A. Steyer, P. Guenoun, D. Beysens, Phys. Rev. E 48, 428 (1993)

    Article  ADS  CAS  Google Scholar 

  7. G. Widawski, M. Rawiso, B. Francois, Nature 369, 387 (1994)

    Article  ADS  CAS  Google Scholar 

  8. B. Francois, O. Pitois, J. Francois, Adv. Mater. 7, 1041 (1995)

    Article  CAS  Google Scholar 

  9. O. Pitois, B. Francois, Eur. Phys. J. B 8, 225 (1999)

    Article  ADS  CAS  Google Scholar 

  10. O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, T. Hashimoto, Langmuir 16, 6071 (2000)

    Article  CAS  Google Scholar 

  11. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Science 292, 79 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  12. L.V. Govor, I.B. Butylina, I.A. Bashmakov, I.M. Grigorieva, V.K. Ksenevich, V.A. Samuilov, in Advanced Semiconductor Devices and Microsystems, ed. by Labinsky (Smolenice, Slovakia, 1996), p. 81

    Google Scholar 

  13. L.V. Govor, I.A. Bashmakov, F.N. Kaputski, M. Pientka, J. Parisi, Macromol. Chem. Phys. 201, 2721 (2000)

    Article  CAS  Google Scholar 

  14. L.V. Govor, I.A. Bashmakov, R. Kiebooms, V. Dyakonov, J. Parisi, Adv. Mater. 13,588 (2001)

    Article  CAS  Google Scholar 

  15. N.F. Mott, E.A. Davis, Electron Processes in Non-Crystalline Materials (Oxford University Press, Clarendon, 1979)

    Google Scholar 

  16. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  CAS  Google Scholar 

  17. A.L. Efros, B.I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975)

    Article  ADS  CAS  Google Scholar 

  18. A.L. Efros, J. Phys. C: Solid State Phys. 9, 2021 (1976)

    Article  ADS  CAS  Google Scholar 

  19. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)

    Google Scholar 

  20. R.M. Hill, Phil. Mag. 24, 1307 (1971)

    Article  ADS  CAS  Google Scholar 

  21. M. Pollak, I. Riess, J. Phys. C: Solid State Phys. 9, 2339 (1976)

    Article  ADS  Google Scholar 

  22. N. Apsley, H.P. Hughes, Phil. Mag. 31, 1327 (1975)

    Article  ADS  CAS  Google Scholar 

  23. N.F. Mott, Phil. Mag. 22, 7 (1970)

    Article  ADS  CAS  Google Scholar 

  24. B.I. Shklovskii, Fiz. Tekh. Poluprovodn. 10, 1440 (1976)

    Google Scholar 

  25. B.I. Shklovskii, Fiz. Tekh. Poluprovodn. 6, 2335 (1972)

    CAS  Google Scholar 

  26. O. Faran, Z. Ovadyahu, Solid State Commun. 67, 823 (1988)

    Article  ADS  CAS  Google Scholar 

  27. D. Shahar, Z. Ovadyahu, Phys. Rev. Lett. 64, 2293 (1990)

    Article  PubMed  ADS  CAS  Google Scholar 

  28. R. Rentzsch, I.S. Shlimak, H. Berger, Phys. Stat. Sol. (a) 54, 487 (1979)

    Article  CAS  Google Scholar 

  29. E.I. Zavaritskaja, Pis’ma Zh. Eksp. Teor. Fiz. 41, 231 (1985)

    Google Scholar 

  30. F. Tremblay, M. Pepper, R. Newbury, D. Ritchie, D.C. Peacock, J.E.F. Frost, G.A.C. Jones, Phys. Rev. B 40, 3387 (1989)

    Article  ADS  CAS  Google Scholar 

  31. P. Granholm, J. Paloheimo, H. Stubb, Phys. Stat. Sol. (b) 205, 315 (1998)

    Article  ADS  CAS  Google Scholar 

  32. A.N. Aleshin, I.S. Shlimak, Fiz. Tekh. Poluprovodn. 21, 466 (1987)

    CAS  Google Scholar 

  33. A.W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1982)

    Google Scholar 

  34. D.Y.C. Chan, J.D. Henry, L.R. White, J. Colloid Interface Sci. 79, 410 (1981)

    Article  CAS  Google Scholar 

  35. C.M. Knobler, D. Beysens, Europhys. Lett. 6, 707 (1988)

    Article  ADS  Google Scholar 

  36. H.M. Princen, in Surface and Colloid Science, Vol. 2, ed. by E. Matijevic (Wiley, New York, 1969), p. 1

    Google Scholar 

  37. D. Beysens, C.M. Knobler, Phys. Rev. Lett. 57, 1433 (1986)

    Article  PubMed  ADS  Google Scholar 

  38. F. Family, P. Meakin, Phys. Rev. Lett. 61, 428 (1988)

    Article  PubMed  ADS  CAS  Google Scholar 

  39. B.J. Briscoe, K.P. Galvin, J. Phys. D: Appl. Phys. 23, 422 (1990)

    Article  ADS  CAS  Google Scholar 

  40. A.V. Limaye, R.D. Narhe, A.M. Dhote, S.B. Ogale, Phys. Rev. Lett. 79, 3762 (1996)

    Article  ADS  Google Scholar 

  41. A. Steyer, P. Guenoun, D. Beysens, Phys. Rev. B 42, 1086 (1990)

    Article  ADS  Google Scholar 

  42. A.G. Zabrodskii, Sov. Phys. Semiconduct. 11, 345 (1977)

    Google Scholar 

  43. R.M. Hill, Phys. Stat. Sol. (a) 35, k29 (1976)

    Article  CAS  Google Scholar 

  44. L.V. Govor, M. Goldbach, I.A. Bashmakov, I.B. Butylina, J. Parisi, Phys. Rev. B 62, 2201 (2000)

    Article  ADS  CAS  Google Scholar 

  45. L.V. Govor, I.A. Bashmakov, K. Boehme, M. Pientka, J. Parisi, J. Appl. Phys. 90,1307 (2001)

    Article  ADS  CAS  Google Scholar 

  46. C.J. Adkins, J. Phys.: Condensed Matter 1, 1253 (1989)

    Article  ADS  CAS  Google Scholar 

  47. A.L. Efros, B.I. Shklovskii, Phys. Stat. Sol. (b) 76, 475 (1976)

    Article  CAS  Google Scholar 

  48. T.G. Castner, N.K. Lee, G.S. Cieloszyk, G.L. Sallinger, Phys. Rev. Lett. 34, 1627 (1975)

    Article  ADS  CAS  Google Scholar 

  49. J.H. Davies, P.A. Lee, T.M. Rice, Phys. Rev. B 29, 4260 (1984)

    Article  ADS  CAS  Google Scholar 

  50. H. Vinzelberg, A. Heinrich, C. Gladun, D. Elefant, Phil. Mag. 65, 651 (1992)

    Article  CAS  Google Scholar 

  51. Y. Zhang, P. Dai, M. Levy, M.P. Sarachik, Phys. Rev. Lett. 64, 2687 (1990)

    Article  PubMed  ADS  CAS  Google Scholar 

  52. A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, Phys. Rev. B 49, 17325 (1994)

    Article  ADS  CAS  Google Scholar 

  53. M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969)

    Article  ADS  CAS  Google Scholar 

  54. L.V. Govor, I.A. Bashmakov, K. Boehme, J. Parisi, J. Appl. Phys. 91, 739 (2002)

    Article  ADS  CAS  Google Scholar 

  55. T.W. Kenny, P.L. Richards, I.S. Park, E.E. Haller, J.W. Beeman, Phys. Rev. B 39,8476 (1989)

    Article  ADS  CAS  Google Scholar 

  56. E.I. Levin, V.L. Nguyen, B.I. Shklovskii, Fiz. Tekh. Poluprovodn. 16, 815 (1982)

    Google Scholar 

  57. E.I. Levin, B.I. Shklovskii, Fiz. Tekh. Poluprovodn. 18, 856 (1984)

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Govor, L.V., Parisi, J. (2008). Honeycomb Carbon Networks: Preparation, Structure, and Transport. In: Al-Shamery, K., Parisi, J. (eds) Self-Organized Morphology in Nanostructured Materials. Springer Series in Materials Science, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72675-3_6

Download citation

Publish with us

Policies and ethics