Skip to main content

Organic Crystalline Nanofibers

  • Chapter
  • 825 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 99))

Summary

Organic crystalline nanofibers are a new class of nanoscaled organic materials that bear high potential as model systems for optics and photonics at the diffraction limit. In addition, due to the possibility to tailor to a large extent morphology as well as optoelectronic properties, organic nanofibers are promising elements for future integrated devices. In this chapter the specific growth conditions are discussed that make the fabrication of this kind of matter possible as well as a range of applications in nano- and microoptics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Kreibig, in Optics of Nanosized Metals, ed. by R.E. Hummel, P. Wißmann, Handbook of Optical Properties, Vol. II, Optics of Small Particles, Interfaces and Surfaces, (CRC, Boca Raton, 1997), p. 145

    Google Scholar 

  2. B.J. Butkus, Biophoton. Int. 5, 34 (2004)

    Google Scholar 

  3. J. Joannopoulos, R. Meade, J. Winn, Photonic Crystals (Princeton Press, Princeton NJ, 1995)

    MATH  Google Scholar 

  4. See, e.g. the website of the company ‘crystal fibre’: www.crystal-fibre.com/

  5. G. Witte, Ch. Woell, J. Mater. Res. 19, 1889 (2004)

    Article  CAS  ADS  Google Scholar 

  6. G. Ziegler, in Thin Film Properties of Oligothiophenes, ed. by H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymers: Vol. 3. Conductive Polymers: Spectroscopy and Physical Properties, (Wiley, New York 1997)

    Google Scholar 

  7. B. Krause, A.C. Dürr, K.A. Ritley, H. Dosch, D. Smilgies, Phys. Rev. B 66, 235404 (2002)

    Article  ADS  CAS  Google Scholar 

  8. M. Brinkmann, S. Graff, C. Straupe, J.C. Wittmann, C. Chaumont, F. Nuesch, A. Aziz, M. Schaer, L. Zuppiroli, J. Phys. Chem. B 107, 10531 (2003)

    Article  CAS  Google Scholar 

  9. R. Resel, Thin Solid Films 433, 1 (2003)

    Article  CAS  ADS  Google Scholar 

  10. G.I. Distler, Kristall und Technik 5, 73 (1970)

    Article  CAS  Google Scholar 

  11. E. Zoyer et al., Phys. Rev. B 61, 16538 (2000)

    Article  ADS  Google Scholar 

  12. L. Athouel, G. Froyer, M.T. Riou, Synth. Met. 55-57, 4734 (1993)

    Google Scholar 

  13. L. Athouel, G. Froyer, M.T. Riou, M. Schott, Thin Solid Films 274, 35 (1996)

    Article  ADS  Google Scholar 

  14. M. Era, T. Tsutsui, S. Saito, Appl. Phys. Lett. 67, 2436 (1995)

    Article  CAS  ADS  Google Scholar 

  15. F. Meghdadi, S. Tasch, B. Winkler, W. Fischer, F. Stelzer, G. Leising, Synth. Met. 85, 1441 (1997)

    Article  CAS  Google Scholar 

  16. K. Erlacher, R. Resel, J. Keckes, G. Leising, Mat. Sci. For., 321-324, 1086 (2000)

    Google Scholar 

  17. M. Ichikawa, H. Yanagi, Y. Shimizu, S. Hotta, N. Suganuma, T. Koyama, Y. Taniguchi, Adv. Mat. 14, 1272 (2002)

    Article  CAS  Google Scholar 

  18. F. Quochi et al., Appl. Phys. Lett. 84, 4454 (2004)

    Article  CAS  ADS  Google Scholar 

  19. H. Yanagi, S. Okamoto, T. Mikami, Synth. Met. 91, 91 (1997)

    Article  CAS  Google Scholar 

  20. A. Niko, F. Meghdadi, C. Ambrosch-Draxl, P. Vogl, G. Leising, Synth. Met. 76, 177 (1996)

    Article  CAS  Google Scholar 

  21. F. Balzer, H.-G. Rubahn, Surf. Sci. 548, 170 (2004)

    Article  CAS  ADS  Google Scholar 

  22. F. Balzer, J. Beermann, S. Bozhevolnyi, A.C. Simonsen, H.-G. Rubahn, Nano Lett. 3, 1311 (2003)

    Article  CAS  ADS  Google Scholar 

  23. G. Koller et al., Adv. Mat. 16, 2159 (2004)

    Article  CAS  Google Scholar 

  24. A. Andreev et al., Adv. Mat. 12, 629 (2000); Thin Solid Films 403-404, 444 (2002)

    Google Scholar 

  25. F. Balzer, H.-G. Rubahn, Appl. Phys. Lett. 79, 3860 (2001); Surf. Sci. 507-510, 588 (2002); Adv. Funct. Mat. 15, 17 (2005)

    Google Scholar 

  26. F. Balzer, H.-G. Rubahn, Nano Lett. 2, 747 (2002)

    Article  CAS  ADS  Google Scholar 

  27. F. Balzer, L. Kankate, H. Niehus, R. Frese, C. Maibohm, H.-G. Rubahn, Nanotechnology 17, 984 (2006)

    Article  CAS  ADS  Google Scholar 

  28. A.C. Simonsen, H.-G. Rubahn, Nano Lett. 2, 1379 (2002)

    Article  CAS  ADS  Google Scholar 

  29. F. Balzer, K. Al-Shamery, R. Neuendorf, H.-G. Rubahn, Chem. Phys. Lett. 368, 307 (2003)

    Article  CAS  ADS  Google Scholar 

  30. J. Brewer, M. Schiek, A. Luetzen, K. Al-Shamery, H.-G. Rubahn, Nano Lett. 6,2656 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  31. J. Beermann, S.I. Bozhevolnyi, V.G. Bordo, H.-G. Rubahn, Opt. Comm. 237, 423 (2004)

    Article  CAS  ADS  Google Scholar 

  32. V.S. Volkov, S.I. Bozhevolnyi, V.G. Bordo, H.-G. Rubahn, J. Microsc. 215, 241 (2004)

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  33. F. Balzer, V.G. Bordo, A.C. Simonsen, H.-G. Rubahn, Appl. Phys. Lett. 82, 10 (2003)

    Article  CAS  ADS  Google Scholar 

  34. F. Balzer, V.G. Bordo, A.C. Simonsen, H.-G. Rubahn, Phys. Rev. B 67, 115408 (2003)

    Article  ADS  CAS  Google Scholar 

  35. J. Brewer, C. Maibohm, L. Jozefowski, L. Bagatolli, H.-G. Rubahn, Nanotechnology 16, 2396 (2005)

    Article  CAS  ADS  Google Scholar 

  36. M. Schiek, A. Luetzen, R. Koch, K. Al-Shamery, F. Balzer, R. Frese, H.-G. Rubahn, Appl. Phys. Lett. 86, 153107 (2005)

    Article  ADS  CAS  Google Scholar 

  37. J. Kjelstrup-Hansen, H.H. Henrichsen, P. Boggild, H.-G. Rubahn, Thin Solid Films 515, 827 (2006)

    Article  CAS  ADS  Google Scholar 

  38. J. Kjelstrup-Hansen, P. Bogild, H.-G. Rubahn, Small 2, 660 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. K. Al-Shamery, H.-G. Rubahn, H. Sitter (ed.), New organic nanostructures for next generation devices. Springer Ser. Mater. Sci., Berlin (2007)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubahn, H.G. (2008). Organic Crystalline Nanofibers. In: Al-Shamery, K., Parisi, J. (eds) Self-Organized Morphology in Nanostructured Materials. Springer Series in Materials Science, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72675-3_1

Download citation

Publish with us

Policies and ethics