Skip to main content

Recurrent Boosting for Classification of Natural and Synthetic Time-Series Data

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4509))

Abstract

Boosted ensemble classifiers have a demonstrated ability to discover regularities in large, poorly modeled datasets. In this paper we present an application of multi-hypothesis AdaBoost to detect epileptiform activity from electrophysiological recordings. While existing boosting methods do not account automatically for the sequence information that is available when analyzing time-series data, we present a recurrent extension to AdaBoost, and show that it improves classification accuracy in our application domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murphy, S.A.: An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 24, 1455–1481 (2005)

    Article  MathSciNet  Google Scholar 

  2. Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  3. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  4. Hauser, W.A., Hesdorffer, D.C.: Epilepsy: Frequency, Causes and Consequences. Demos, New York (1990)

    Google Scholar 

  5. Kwan, P., Brodie, M.J.: Early identification of refractory epilepsy. New England Journal of Medicine 342(5), 314–319 (2000)

    Article  Google Scholar 

  6. Uthman, B.M., Reichl, A.M., Dean, J.C., Eisenschenk, S., Gilmore, R., Reid, S., Roper, S.N., Wilder, B.J.: Effectiveness of vagus nerve stimulation in epilepsy patients: a 12 year observation. Neurology 63, 1124–1126 (2004)

    Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2) (2004)

    Google Scholar 

  9. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  10. Chiu, A.W.L., Daniel, S., Khosravani, H., Carlen, P.L., Bardakjian, B.L.: Prediction of seizure onset in an in-vitro hippocampal slice model of epilepsy using gaussian-based and wavelet-based artificial neural networks. Annals of Biomedical Engineering 33(6), 798–810 (2005)

    Article  Google Scholar 

  11. Khan, Y.U., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clinical Neurophysiology 114, 898–908 (2003)

    Article  Google Scholar 

  12. Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clemenceau, S., Renault, B., Varela, F.J.: Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine 4(10), 1173–1176 (1998)

    Article  Google Scholar 

  13. De Guzman, P., D’Antuono, M., Avoli, M.: Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro. Neuroscience 123, 875–886 (2004)

    Article  Google Scholar 

  14. Vincent, R.D., Pineau, J., de Guzman, P., Avoli, M.: Labeled epileptiform data (2006), http://www.cs.mcgill.ca/~jpineau/datasets/epilepsy.tar.gz

  15. Schapire, R.E.: The boosting approach to machine learning: an overview. In: Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and Classification, pp. 149–172. Springer, Heidelberg (2003)

    Google Scholar 

  16. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 297–336 (1999)

    Article  MATH  Google Scholar 

  17. Bergstra, J., Casagrande, N., Eck, D.: Two algorithms for timbre- and rhythm-based multi-resolution audio classification. In: 1st Annual Music Information Retrieval Exchange (2005)

    Google Scholar 

  18. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  19. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2) (1989)

    Google Scholar 

  20. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  21. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  22. Diez, J.J.R., González, C.A.: Applying boosting to similarity literals for time series classification. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 210–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Boné, R., Assaad, M., Crucianu, M.: Boosting recurrent neural networks for time series prediction. In: Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds.) Artificial Neural Networks and Genetic Algorithms, pp. 18–22. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ziad Kobti Dan Wu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Vincent, R.D., Pineau, J., de Guzman, P., Avoli, M. (2007). Recurrent Boosting for Classification of Natural and Synthetic Time-Series Data. In: Kobti, Z., Wu, D. (eds) Advances in Artificial Intelligence. Canadian AI 2007. Lecture Notes in Computer Science(), vol 4509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72665-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72665-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72664-7

  • Online ISBN: 978-3-540-72665-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics