Skip to main content

Occurrence and Fate of MTBE in the Aquatic Environment Over the Last Decade

  • Chapter
Fuel Oxygenates

Abstract

In the last decade, it became increasingly evident that the fuel oxygenate methyl tertiary butyl ether (MTBE) is nearly ubiquitous in the worldwide environment. The detection frequency of MTBE rivals other volatile organic compounds (VOCs) that have been produced and used for a much longer period of time. Its mere presence in water bodies used as drinking water reservoirs (rivers, lakes, or groundwater tables) has aroused concern about its potential sources, persistence, or possible adverse effects (aesthetic or toxic implications) for end-users and aquatic life. The purpose of this chapter is to provide an updated overview of the current environmental concentrations, the occurrence of the pollutant in the different aquatic compartments, the relevance of diffuse and point sources, and the different alternatives for remediation of MTBE contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Squillace PJ, Pankow JF, Korte NE, Zogorski JS (1997) Environ Toxicol Chem 16:1836

    Google Scholar 

  2. Finnish Environment Institute (2002) EUR 20417 EN – European Union risk assessment report tert-butyl methyl ether. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  3. US Environmental Protection Agency (1997) Drinking water advisory: consumer acceptability advice and health effects analysis on methyl tertiary-butyl ether (MTBE). Office of Water; EPA-822-F-97-009; Washington, DC

    Google Scholar 

  4. Stocking AJ, Suffet IH, McGuire MJ, Kavanaugh MC (2001) J Am Water Works Assoc 93:95

    Google Scholar 

  5. World Health Organization (2005) Methyl tertiary-butyl ether (MTBE) in drinking- water, background document for development of WHO Guidelines for Drinking- Water Quality. WHO/SDE/WSH/05.08/122

    Google Scholar 

  6. Werner I, Koger CS, Deanovic LA, Hinton DE (2001) Environ Pollut 111:83

    Google Scholar 

  7. Rausina GA, Wong DCL, Arnold WR, Mancini ER, Steen AE (2002) Chemosphere 47:525

    Google Scholar 

  8. Hernando MD, Ejerhoon M, Fernandez-Alba AR, Chisti Y (2003) Water Res 37:4091

    Google Scholar 

  9. Schmidt TC, Duong H-A, Berg M, Haderlein SB (2001) Analyst 126:405

    Google Scholar 

  10. Schmidt TC (2003) Trend Anal Chem 22:776

    Google Scholar 

  11. Atienza J, Aragon P, Herrero MA, Puchades R, Maquieira A (2005) Crit Rev Anal Chem 35:317

    Google Scholar 

  12. Barcelo D, Petrovic M (2005) Trend Anal Chem 24:275

    Google Scholar 

  13. McGarry FJ (2004) 2nd European conference on MTBE. Barcelona, Spain

    Google Scholar 

  14. European Union (2003) Off J Eur Union L76:10

    Google Scholar 

  15. Schmidt TC, Morgenroth E, Schirmer M, Effenberger M, Haderlein SB (2002) In: Diaz AF, Drogos DL (eds) Oxygenates in gasoline: environmental aspects. ACS Symp Series. Am Chem Soc, Washington, DC, p 58

    Google Scholar 

  16. Achten C, Puttmann W (2001) J Chromatogr A 910:377

    Google Scholar 

  17. Rosell M, Lacorte S, Barcelo D (2006) Trend Anal Chem 25:1016

    Google Scholar 

  18. European Union (2003) Off J Eur Union L123:42

    Google Scholar 

  19. Tanabe A, Tsuchida Y, Ibaraki T, Kawata K, Yasuhara A, Shibamoto T (2005) J Chromatogr A 1066:159

    Google Scholar 

  20. Johnson R, Pankow J, Bender D, Price C, Zogorski J (2000) Environ Sci Technol 34:210A

    Google Scholar 

  21. Achten C, Puttmann W, Klasmeier J (2002) J Environ Monit 4:747

    Google Scholar 

  22. Arp HPH (2003) The Role of temperature on the environmental fate of MTBE and alternatives. Degree of Masters in Applied Environmental Geoscience, Eberhard-Karls Universität Tübingen

    Google Scholar 

  23. Delzer GC, Zogorski JS, Lopes TJ (1997) Abstr Paper Am Chem Soc 213:100

    Google Scholar 

  24. Achten C, Kolb A, Puttmann W (2001) Fresenius J Anal Chem 371:519

    Google Scholar 

  25. Achten C, Kolb A, Puttmann W (2001) Atmos Environ 35:6337

    Google Scholar 

  26. Kolb A, Puttmann W (2006) Atmos Environ 40:76

    Google Scholar 

  27. Pankow JF, Thomson NR, Johnson RL, Baehr AL, Zogorski JS (1997) Environ Sci Technol 31:2821

    Google Scholar 

  28. Squillace PJ, Zogorski JS, Wilber WG, Price CV (1996) Environ Sci Technol 30:1721

    Google Scholar 

  29. Moran MJ, Zogorski JS, Squillace PJ (2005) Ground Water 43:615

    Google Scholar 

  30. Klinger J, Stieler C, Sacher F, Branch HJ (2002) J Environ Monit 4:276

    Google Scholar 

  31. US Environmental Protection Agency (1999) achieving clean air and clean water: the report of the blue ribbon panel on oxygenates in gasoline. EPA420-R-99-021; Washington, DC

    Google Scholar 

  32. Shih T, Rong Y, Harmon T, Suffet M (2004) Environ Sci Technol 38:42

    Google Scholar 

  33. Rosell M, Lacorte S, Ginebreda A, Barcelo D (2003) J Chromatogr A 995:171

    Google Scholar 

  34. Rosell M, Lacorte S, Forner C, Rohns HP, Irmscher R, Barcelo D (2005) Environ Toxicol Chem 24:2785

    Google Scholar 

  35. Achten C, Kolb A, Puttmann W, Seel P, Gihr R (2002) Environ Sci Technol 36:3652

    Google Scholar 

  36. Baus C, Hung H, Sacher F, Fleig M, Brauch HJ (2005) Acta Hydrochim Hydrobiol 33:118

    Google Scholar 

  37. Baus C, Sacher F, Brauch HJ (2005) Ozone-Sci Eng 27:27

    Google Scholar 

  38. Reuter JE, Allen BC, Richards RC, Pankow JF, Goldman CR, Scholl RL, Seyfried JS (1998) Environ Sci Technol 32:3666

    Google Scholar 

  39. Heald PC, Schladow SG, Reuter JE, Allen BC (2005) Environ Sci Technol 39:1111

    Google Scholar 

  40. Toran L, Lipka C, Baehr A, Reilly T, Baker R (2003) Water Res 37:3756

    Google Scholar 

  41. Schmidt TC, Haderlein SB, Pfister R, Forster R (2004) Water Res 38:1520

    Google Scholar 

  42. Stocking AJ, Kavanaugh MC (2000) J Environ Eng-ASCE 126:1131

    Google Scholar 

  43. Deeb RA, Chu KH, Shih T, Linder S, Suffet I, Kavanaugh MC, Alvarez-Cohen L (2003) Environ Eng Sci 20:433

    Google Scholar 

  44. Cirvello JD, Radovsky A, Heath JE, Farnell DR, Lindamood C (1995) Toxicol Indust Health 11:151

    Google Scholar 

  45. Brown JS, Bay SM, Greenstein DJ, Ray WR (2001) Marine Pollut Bull 42:957

    Google Scholar 

  46. Zuccarello JL, Ganske JA, Green DB (2003) Chemosphere 51:805

    Google Scholar 

  47. Mezcua M, Aguera A, Hernando MD, Piedra L, Fernandez-Alba AR (2003) J Chromatogr A 999:81

    Google Scholar 

  48. Guitart C, Bayona JM, Readman JW (2004) Chemosphere 57:429

    Google Scholar 

  49. Stern BR, Tardiff RG (1997) Risk Anal 17:727

    Google Scholar 

  50. Williams PRD (2001) Environ Forensics 2:75

    Google Scholar 

  51. Dottridge J, Hall M, Firth S (2000) A review of current MTBE usage and occurrence in groundwater in England and Wales. Environment Agency; Research and Development Technical Report P406; Bristol, UK

    Google Scholar 

  52. Morgenstern P, Versteegh AFM, de Korte GAL, Hoogerbrugge R, Mooibroek D, Bannink A, Hogendoorn EA (2003) J Environ Monit 5:885

    Google Scholar 

  53. Achten C, Kolb A, Puttmann W (2002) Environ Sci Technol 36:3662

    Google Scholar 

  54. Kolb A, Puttmann W (2006) Environ Pollut 140:294

    Google Scholar 

  55. Piazza F, Barbieri A, Violante FS, Roda A (2001) Chemosphere 44:539

    Google Scholar 

  56. Deeb RA, Scow KM, Alvarez-Cohen L (2000) Biodegradation 11:171

    Google Scholar 

  57. Fayolle F, Vandecasteele JP, Monot F (2001) Appl Microbiol Biotechnol 56:339

    Google Scholar 

  58. Schmidt TC, Schirmer M, Weib H, Haderlein SB (2004) J Contam Hydrol 70:173

    Google Scholar 

  59. Stocking AJ, Deeb RA, Flores AE, Stringfellow W, Talley J, Brownell R, Kavanaugh MC (2000) Biodegradation 11:187

    Google Scholar 

  60. Zanardini E, Pisoni C, Ranalli G, Zucchi M, Sorlini C (2002) Ann Microbiol 52:207

    Google Scholar 

  61. Government of Canada (1992) Canadian Environmental Protection Act. Priority substances list, assessment report no. 5, methyl tertiary-butyl ether. 40-215/5E; Ottawa, Canada

    Google Scholar 

  62. Arp HPH, Fenner K, Schmidt TC (2005) Environ Sci Technol 39:3237

    Google Scholar 

  63. Valtchev S, Bittens M, Arp HPH, Schmidt TC (2004) 2nd European Conference on MTBE. Barcelona, Spain

    Google Scholar 

  64. US Environmental Protection Agency (1998) Oxygenates in water: critical information and research needs. Office of Research and Development; EPA/600/R-98/048; Washington, DC

    Google Scholar 

  65. Fayolle F, Hernandez G, Le Roux F, Vandecasteele J-P (1998) Biotechnol Lett 20:283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosell, M., Lacorte, S., Barceló, D. (2007). Occurrence and Fate of MTBE in the Aquatic Environment Over the Last Decade. In: Barceló, D. (eds) Fuel Oxygenates. The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72641-8_2

Download citation

Publish with us

Policies and ethics