Skip to main content

Microbial Degradation of MTBE in Reactors

  • Chapter
Fuel Oxygenates

Abstract

The use of methyl tert-butyl ether (MTBE) has resulted in serious contamination of many groundwater supplies worldwide. Literature investigations were performed with the aim of improving knowledge on the use of bioreactors for removal of MTBE from contaminated groundwater. Among the important findings were: membrane bioreactors and fluidized bed reactors had the highest volumetric removal rates of all reactors studied, in the order of 1000 mg/(l d); competition for oxygen, nutrients and occupancy between MTBE degraders and oxidisers of co-contaminants such as, ammonium and the group of benzene, toluene, ethylbenzene and xylenes, may reduce the removal rates of MTBE, or prevent its removal in reactors. With mathematical modelling, the long startup time required for some MTBE degrading reactors could be predicted. Long startup times of up to 200 days were due to the low maximum growth rate of the MTBE degraders, in the order of 0.1 d–1 or less, at 25 ◦C. However, despite this, high volumetric MTBE removal rates were found to be possible after the startup period when the biomass concentration reached a steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deeb RA, Scow KM, Alvarez-Cohen L (2000) Biodegradation 11:171

    Google Scholar 

  2. EFOA (2005) MTBE resource guide. The European Fuel Oxygenate Association, Brussels, Belgium

    Google Scholar 

  3. Mays MA (1989) Pure Appl Chem 61:1373

    Google Scholar 

  4. Morgenroth E, Arvin E (2003) The European perspective to MTBE as an oxygenate in fuels. In: Rapport D, Lasley W, Rolston D, Nielsen O, Qualset C, Damania A (eds) Managing for Ecosystem Health. Lewis Publisher, Boca Raton, Florida, p 1447

    Google Scholar 

  5. Johnson R, Pankow J, Bender D, Price C, Zororski J (2000) Environ Sci Technol 34:210A

    Google Scholar 

  6. White J (2001) Environ Foren 2:185

    Google Scholar 

  7. Davis LC, Erickson LE (2004) Environ Prog 23:243

    Google Scholar 

  8. Du JT, Abernathy CO, Donohue J, Mahfouz A, Khanna K (1998) Toxicologist 42(1-S):A 1123

    Google Scholar 

  9. Fiorenza S, Rifai H (2003) Bioremed J 7:1

    Google Scholar 

  10. Deeb RA, Chu K-H, Shih T, Linder S, Suffet I, Kavanaugh MC, Alvarez-Cohen L (2003) Environ Eng Sci 20:433

    Google Scholar 

  11. Keller A, Froines J, Koshland C, Reuter J, Suffet I, Last J (1998) Health & environmental assessment of MTBE, summary and recommendations. UC TSR&TP report to the governor of California, California

    Google Scholar 

  12. Juhler R, Felding G (2003) Biodegradation Wat Air Soil Poll 149:145

    Google Scholar 

  13. White GF, Russell NJ, Tidswell EC (1996) Microbiol Rev 60:747

    Google Scholar 

  14. Fayolle F, Vandecasteele J-P, Monot F (2001) Appl Microbiol Biotechnol 56:339

    Google Scholar 

  15. Hanson JR, Ackerman CE, Scow KM (1999) Appl Environ Microbiol 65:4788

    Google Scholar 

  16. Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Appl Environ Microbiol 60:2593

    Google Scholar 

  17. Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbook of environmental degradation rates. Lewis Publishers Inc., Chelsea, Michigan

    Google Scholar 

  18. Japar SM, Wallington TJ, Rudy SJ, Chong TY (1991) Environ Sci Technol 25:415

    Google Scholar 

  19. Prince R (2000) Crit Rev Microbiol 26:163

    Google Scholar 

  20. Li T, Patel RU, Ramsden DK, Greene J (2003) Ground water recovery and treatment. In: Moyer E, Kostecki PT (eds) MTBE Remediation Handbook. Amherst Scientific Publishers, Massachusetts, p 289

    Chapter  Google Scholar 

  21. Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer C (2006) Appl Microbiol Biotechnol 70:358

    Google Scholar 

  22. François A, Mathis H, Godefroy D, Piveteau P, François F, Monot F (2002) Appl Environ Microbiol 68:2754

    Google Scholar 

  23. Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Appl Environ Microbiol 67:5601

    Google Scholar 

  24. Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Appl Microbiol Biotechnol 47:69

    Google Scholar 

  25. Hristova K, Gebreyesus B, Mackay D, Scow KM (2003) Appl Environ Microbiol 69:2616

    Google Scholar 

  26. Garnier PM, Auria R, Augur C, Revah S (1999) Appl Microbiol Biotechnol 51:498

    Google Scholar 

  27. Hyman MR, Kwon P, O’Reilly KT (1998) Cometabolism of MTBE by alkane-utilizing microorganisms. In: Wickramanayake GB, Hinchee RE (eds) The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 18-21, p 321

    Google Scholar 

  28. Johnson E, Smith CA, O’Reilly KT, Hyman MR (2004) Appl Environ Microbiol 70:1023

    Google Scholar 

  29. Liu CY, Speitel Jr GE, Georgiou G (2001) Appl Environ Microbiol 67:2197

    Google Scholar 

  30. Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Appl Environ Microbiol 63:4216

    Google Scholar 

  31. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York

    Google Scholar 

  32. Hyman MR, Taylor C, O’Reilly KT (2000) Cometabolic degradation of MTBE by zso-alkane-utilizing bacteria from gasoline-impacted soils. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 149

    Google Scholar 

  33. Bradley PM, Chapelle FH, Landmeyer JE (2001) Appl Environ Microbiol 67:1975

    Google Scholar 

  34. Finneran KT, Lovley DR (2001) Environ Sci Technol 35:1785

    Google Scholar 

  35. Pruden A, Sedran MA, Suidan MT, Venosa AD (2005) Water Environ Res 77:297

    Google Scholar 

  36. Somsamak P, Cowan RM, Häggblom MM (2001) FEMS Microbiol Ecol 37:259

    Google Scholar 

  37. Suflita JM, Mormile M (1993) Environ Sci Technol 27:976

    Google Scholar 

  38. Yeh CK, Novak JT (1994) Water Environ Res 66:744

    Google Scholar 

  39. Bryers JD, Characklis WG (1989) Biofilms in water and wastewater treatment. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., p 671

    Google Scholar 

  40. Morrison JR, Suidan MT, Venosa AD (2002) J Environ Eng 128:836

    Google Scholar 

  41. Vainberg S, Togna AP, Sutton PM, Steffan RJ (2002) J Environ Eng 128:842

    Google Scholar 

  42. Wilson GJ, Pruden A, Suidan MT, Venosa AD (2002) J Environ Eng 128:824

    Google Scholar 

  43. Arvin E, Nielsen LK, Tully AG, Albrechtsen H-J, Mosbæk H (2004) IWA Leading Edge Conference. Prague, Czech Republic

    Google Scholar 

  44. Characklis WG, Marshall KC (1989) Biofilms: a basis for an interdisciplinary approach. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 3

    Google Scholar 

  45. Characklis WG (1989) Biofilm processes. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 195

    Google Scholar 

  46. Trulear MG, Characklis WG (1982) Wat Pollut Control 54:1288

    Google Scholar 

  47. Fortin NY, Morales M, Nakagawa Y, Focht DD, Deshusses MA (2001) Environ Microbiol 3:407

    Google Scholar 

  48. Waul C (2007) PhD Thesis, Technical University of Denmark

    Google Scholar 

  49. Henze M, Harremoes P, Jes la Cour J, Arvin E (1997) Wastewater treatment: biological and chemical processes, 2nd edn. Springer, Heidelberg

    Google Scholar 

  50. Christensen BE, Characklis WG (1989) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 93

    Google Scholar 

  51. Stocking AJ, Deeb RA, Flores AE, Stringfellow WT, Talley J, Brownell R, Kavanaugh MC (2000) Biodegradation 11:187

    Google Scholar 

  52. Zein MM, Pinto PX, Garcia-Blanco S, Suidan MT (2006) Biodegradation 17:57

    Google Scholar 

  53. Characklis WG, Turakhia MH, Zelver N (1989) Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 265

    Google Scholar 

  54. Tchobanoglous G, Burton F, Stensel H (2003) Wastewater engineering: treatment and reuse/Metcaff and Eddy, Inc, 4th edn. McGraw-Hill, New York

    Google Scholar 

  55. Speece RE (1996) Anaerobic biotechnology for industrial wastewaters, 1st edn. Archae Press, Nashville, TX

    Google Scholar 

  56. Van Loosdrecht MCM, de Kreuk MK, Heijnen JJ (2002) Papers of the Farewell Seminar of Dr.ir. Look Hulshoff Pol. Wageningen, The Netherlands

    Google Scholar 

  57. Schmidt JE, Ahring BK (1996) Biotechnol Bioeng 49:229

    Google Scholar 

  58. Versprille Ir AI (2002) Papers of the Farewell Seminar of Dr.ir. Look Hulshoff Pol. Wageningen, The Netherlands

    Google Scholar 

  59. Jördening H-J, Buchholz K (2005) High rate anaerobic wastewater treatment. In: Jördening H-J, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH, Weinheim, p 135

    Chapter  Google Scholar 

  60. Pruden A, Sedran MA, Suidan MT, Venosa AD (2003) J Environ Eng 47:123

    Google Scholar 

  61. Stringfellow WT, Oh K-C (2002) J Environ Eng 128:852

    Google Scholar 

  62. Steffan RJ, Vainberg S, Condee CW, McClay K (2000) Biotreatment of MTBE with a new bacterial isolate. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 165

    Google Scholar 

  63. Zein MM, Suidan MT, Venosa AD (2004) Environ Sci Technol 38:3449

    Google Scholar 

  64. Zein MM, Suidan MT, Venosa AD (2006) Environ Sci Technol 40:1997

    Google Scholar 

  65. Kharoune M, Pauss A, Lebeault JM (2001) Wat Res 35:1665

    Google Scholar 

  66. Arvin E, Krag R, Karlson U (2003) First European Conference on MTBE. Dresden, Germany

    Google Scholar 

  67. Acuna-Askar K, Englande Jr AJ, Hu C, Jin G (2000) Water Sci Tech 42:153

    Google Scholar 

  68. Jin G, Englande Jr AJ (1998) Water Sci Tech 38:155

    Google Scholar 

  69. Liu S-J, Jiang B, Huang G-Q, Li X-G (2006) Wat Res 40:3401

    Google Scholar 

  70. Nielsen LK, Tully AG, Albrechtsen H-J, Mosbæk H, Arvin E (2002) Fjernelse af MTBE i danske vandværker. Miløstyrelsen (In Danish), Copenhagen

    Google Scholar 

  71. Morales M, Deshusses MA, Revah S (2000) Paper 795. Proc. Annual Meeting and Exibition of the Air and Waste Management Association (AWMA). Pittsburgh

    Google Scholar 

  72. Prandi A, Romano M, Bottarelli M, Armanini S (2002) Trickling filter decontamination of MTBE from groundwater: 15 field applications. In: Gavaskar AR, Chen ASC (eds) Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA p2H

    Google Scholar 

  73. O’Connell JE (2001) Fluidized bed bioreactor for MTBE and TBA in water. In: Magar VS, Gibbs JT, O’Reilly KT, Hyman MR, Leeson A (eds) The Sixth International In Situ and On-Site Bioremediation Symposium. Battelle, San Diego, California, June 4-7, p 91

    Google Scholar 

  74. Pruden A, Suidan MT, Venosa AD, Wilson GJ (2001) Environ Sci Technol 35:4235

    Google Scholar 

  75. McCarty PL (1972) Energetics of organic matter degradation. In: Mitchell R (ed) Water Pollution Microbiol. Wiley, New York, p 91

    Google Scholar 

  76. Longmuir IS (1954) Biochemistry 57:81

    Google Scholar 

  77. Park K, Cowan RM (1997) Effects of oxygen and temperature on the biodegradation of MTBE Proceedings of the 213th ACS National Meeting, Division of Environmental Chemistry. San Francisco, California, p 421

    Google Scholar 

  78. Koenigsberg S, Sandefur C, Mahaffey W, Deshusses MA, Fortin NY (1999) Peroxygen mediated bioremediation of MTBE. In: Leeson A, Alleman BC (eds) The Fifth International In Situ and On-site Bioremediation Symposium. Battelle, p 13

    Google Scholar 

  79. Wang X (2003) PhD Thesis, University of California, Riverside

    Google Scholar 

  80. Salanitro JP, Chou CS, Wisniewski HL, Vipond TE (1998) Southwestern Regional Conference of the National Ground Water Association

    Google Scholar 

  81. Eweis JB, Chang DPY, Schroeder ED, Scow KM, Morton RL, Caballero RC (1997) Proceedings of the 90th Annual Meeting and Exhibition of the Air & Waste Management Association. Toronto, Canada

    Google Scholar 

  82. Piveteau P, Fayolle F, Vandecasteele J-P, Monot F (2001) Appl Microbiol Biotechnol 55:369

    Google Scholar 

  83. Deeb RA, Hu H-Y, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Environ Sci Technol 35:312

    Google Scholar 

  84. Church CD, Tratnyek PJ, Pankow JF, Landmeyer JE, Baehr AL, Thomas MA, Schirmer M (1999) Proceedings of the Technical Meeting of USGS Toxic Substances Hydrology Program. Charleston, SC

    Google Scholar 

  85. Stringfellow WT, Hines RD, Cockrum DK, Kilkenny ST (2000) Factors influenc-ing biological treatment of MTBE in fixed film reactors. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 175

    Google Scholar 

  86. Goudar CT, Strevett KA (1998) J Indus Microbiol Biotech 21:11

    Google Scholar 

  87. Krag R, Arvin E (2004) Second European Conference on MTBE. Barcelona, Spain

    Google Scholar 

  88. Pruden A (2002) PhD Thesis, University of Cincinnati

    Google Scholar 

  89. Sedran MA, Pruden A, Wilson GJ, Suidan MT, Venosa AD (2002) J Environ Eng 128:830

    Google Scholar 

  90. Eweis JB, Watanabe N, Schroeder ED, Chang DPY, Scow KM (1998) National Groundwater Association Conference. Anaheim, California

    Google Scholar 

  91. Eweis JB, Schroeder ED, Chang DPY, Scow KM (1998) Biodegradation of MTBE in a pilot-scale biofilter. In: Wickramanayake GB, Hinchee RE (eds) The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Montery, California, May 18-21, p 341

    Google Scholar 

  92. Shim H, Yang S-T (1999) J Biotech 67:99

    Google Scholar 

  93. Arcangeli J-P, Arvin E (1994) Wat Sci Tech 29:393

    Google Scholar 

  94. Arcangeli J-P, Arvin E (1992) Appl Microbiol Biotechnol 37:510

    Google Scholar 

  95. Waul C, Christensen N, Mosbæk H, Arvin E, Schmidt JE (2004) Second European Conference on MTBE. Barcelona, Spain

    Google Scholar 

  96. Schroeder ED, Scow KM, Converse BM, Scarano J, Watanabe N, Romstad K (2000) Extended abstract prepared for the USEPA/API Workshop on the Biodegradation of MTBE. Cincinati, OH

    Google Scholar 

  97. Zaitsev GM, Uotila JS, Häggblom MM (2007) Appl Microbiol Biotechnol 74:1092

    Google Scholar 

  98. Nielsen LK, Petersen AG (2001) MSc Thesis, Technical University of Denmark

    Google Scholar 

  99. Sedran MA (2004) PhD Thesis, University of Cincinnati

    Google Scholar 

  100. Hyman MR, O’Reilly KT (1999) Physiological and enzymatic features of MTBE-degrading bacteria. In: Alleman BC, Leeson A (eds) Proceedings of the Fifth International In Situ and On-site Bioremediation Symposium. Battelle, Monterey, California, May 18-21, p 7

    Google Scholar 

  101. Steffan RJ, Farhan YH, Condee CW, Drew S (2003) Bioremediation at a New Jer-sey site using propane-oxidising bacteria. In: Moyer E, Kostecki PT (eds) MTBE Remediation Handbook. Amherst Scientific Publishers, Amherst, Massachusetts, p 503

    Chapter  Google Scholar 

  102. Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Appl Microbiol Biotechnol 55:17

    Google Scholar 

  103. Corcho D, Watkinson RJ, Lerner DN (2000) Cometabolic degradation of MTBE by a cyclohexane-oxidising bacteria. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 183

    Google Scholar 

  104. Smith CA, O’Reilly KT, Hyman MR (2003) Appl Environ Microbiol 69:7385

    Google Scholar 

  105. Smith CA, O’Reilly KT, Hyman MR (2003) Appl Environ Microbiol 69:796

    Google Scholar 

  106. Cowan RM, Park K (1996) Proceedings of the 28th Mid-Atlantic Industrial and Hazardous Waste Conference. Buffalo, New York

    Google Scholar 

  107. Henze M, Grady Jr CPL, Gujer W, Marais GvR, Matsuo T (1987) Activated sludge model no. 1 (IAWPRC Scientific and Technical Report No. 1). IAWPRC, London

    Google Scholar 

  108. Wilson JT (2003) Aerobic in situ bioremediation. In: Moyer E, Kostecki PT (eds) MTBE Remediation Handbook. Amherst Scientific Publishers, Amherst, Mas-sachusetts, p 243

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waul, C., Arvin, E., Schmidt, J. (2007). Microbial Degradation of MTBE in Reactors. In: Barceló, D. (eds) Fuel Oxygenates. The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72641-8_10

Download citation

Publish with us

Policies and ethics