Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 156))

  • 899 Accesses

Abstract

The Kondo effect has become a hallmark of coherent electron transport in a variety of nanostructures ranging from lithographically-defined semiconductors [1] to carbon nanotubes [2] and molecules [3, 4]. Kondo first introduced a phenomenological Hamiltonian [5] to describe how localized spin S couples antiferromagnetically with strength J to spins s of electrons in the surrounding reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M. A. Kastner: Nature 391, 156 (1998)

    Article  CAS  Google Scholar 

  2. J. Nygard, D. H. Cobden, P. E. Lindelof: Nature 408, 342 (2000)

    Article  CAS  Google Scholar 

  3. J. Park, A. N. Pasupathy, J. L. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, D. C. Ralph: Nature 417, 722 (2002)

    Article  CAS  Google Scholar 

  4. Wenjie Liang, Marc Bockrath, Hongkun Park: Phys. Rev. Lett. 88, 126801 (2002)

    Article  CAS  Google Scholar 

  5. J. Kondo: Prog. Theor. Phys. 32, 37 (1964)

    Article  CAS  Google Scholar 

  6. J. M. Luttinger: Journal of Mathematical Physics 4, 1154 (1963); S. Tomonaga: Prog. Theor. Phys. (Kyoto) 5, 544 (1950)

    Article  CAS  Google Scholar 

  7. R. B. Laughlin: Phys. Rev. Lett. 50, 1395 (1983)

    Article  Google Scholar 

  8. J. Bardeen, L. N. Cooper, J. R. Schrieffer: Phys. Rev. 108, 1175 (1957)

    Article  CAS  Google Scholar 

  9. D.L. Cox, A. Zawadowski: Advances in Physics 47, 599 (1998); condmat/9704103 (1997)

    Article  CAS  Google Scholar 

  10. Ph. Nozieres, A. Blandin: J. Phys. (Paris) 41, 193 (1980)

    Article  CAS  Google Scholar 

  11. A. Zawadowski: Phys. Rev. Lett. 45, 211 (1980)

    Article  CAS  Google Scholar 

  12. Ian Affleck, Andreas W. W. Ludwig: Phys. Rev. B 48, 7297 (1993)

    Article  CAS  Google Scholar 

  13. C. L. Seaman, M. B. Maple, B. W. Lee, S. Ghamaty, M. S. Torikachvili, J.-S. Kang, L. Z. Liu, J. W. Allen, D. L. Cox: Phys. Rev. Lett. 67, 2882 (1991)

    Article  CAS  Google Scholar 

  14. D. C. Ralph, R. A. Buhrman: Phys. Rev. Lett. 69, 2118 (1992)

    Article  CAS  Google Scholar 

  15. D. C. Ralph, A. W. W. Ludwig, Jan von Delft, R. A. Buhrman: Phys. Rev. Lett. 72, 1064 (1994)

    Article  CAS  Google Scholar 

  16. T. Cichorek, A. Sanchez, P. Gegenwart, F. Weickert, A. Wojakowski, Z. Henkie, G. Auffermann, S. Paschen, R. Kniep, F. Steglich: Phys. Rev. Lett. 94, 236603 (2005)

    Article  CAS  Google Scholar 

  17. In dilute rare earth/actinide alloys, thermodynamic evidence is largely compatible with 2ck, but the inability to reconcile transport data with 2ck theory has left the final state of understanding inconclusive. In the putative atomic two-level system 2ck measured by Ralph et al. in narrow metal constrictions [14,15] and more recently by Cichorek et al. in bulk metallic glasses [16], the transport data nicely match the expected scaling behavior, but a fundamental controversy persists about whether the original (near-degenerate but strongly-coupled two-level system) model Hamiltonian can even exist in a real physical system

    Google Scholar 

  18. K. A. Matveev: Sov. Phys. 72, 892 (1991); Zh. Eksp. Teor. Fiz. 99, 1598 (1991)

    Google Scholar 

  19. Eugene H. Kim: cond-mat/0106575 (2001)

    Google Scholar 

  20. Yuval Oreg, David Goldhaber-Gordon: cond-mat/0203302 (2002)

    Google Scholar 

  21. R. M. Potok, I. G. Rau, Hadas Shtrikman, Yuval Oreg, D. Goldhaber-Gordon: Observation of the two-channel Kondo effect (2006)

    Google Scholar 

  22. R. M. Potok, I. G. Rau, Hadas Shtrikman, Yuval Oreg, D. Goldhaber-Gordon: Supplementary information for cond-mat/0610721 (2006); Potok et al: Observation of the two-channel Kondo effect (2006)

    Google Scholar 

  23. S. Florens, A. Rosch: Phys. Rev. Lett. 92, 216601 (2004)

    Article  CAS  Google Scholar 

  24. M. Pustilnik, L. Borda, L. I. Glazman, J. von Delft: Phys. Rev. B 69, 115316 (2004)

    Article  CAS  Google Scholar 

  25. L. I. Glazman, M. Pustilnik: cond-mat/0302159 (2003)

    Google Scholar 

  26. Y. Meir, N. S. Wingreen: Phys. Rev. Lett. 68, 2512 (1992)

    Article  Google Scholar 

  27. A. C. Hewson: The Kondo Problem to Heavy Fermions, (Campridge University Press, Cambridge 1993)

    Google Scholar 

  28. F. D. M. Haldane: Phys. Rev. Lett. 40, 416 (1978)

    Article  CAS  Google Scholar 

  29. J. R. Schrieffer, P. A. Wolff: Phys. Rev. 149, 491 (1966)

    Article  CAS  Google Scholar 

  30. P. W. Anderson: J. Phys. C 3, 2436 (1970)

    Article  CAS  Google Scholar 

  31. M. Pustilnik, L. I. Glazman: Phys. Rev. B 64, 045328 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oreg, Y., Goldhaber-Gordon, D. (2007). The Two Channel Kondo Effect in Quantum Dots. In: Karmakar, S.N., Maiti, S.K., Chowdhury, J. (eds) Physics of Zero- and One-Dimensional Nanoscopic Systems. Springer Series in Solid-State Sciences, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72632-6_2

Download citation

Publish with us

Policies and ethics