Advertisement

Instance-Dependent Verifiable Random Functions and Their Application to Simultaneous Resettability

  • Yi Deng
  • Dongdai Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)

Abstract

We introduce a notion of instance-dependent verifiable random functions (InstD-VRFs for short). Informally, an InstD-VRF is, in some sense, a verifiable random function [23] with a special public key, which is generated via a (possibly)interactive protocol and contains an instance y ∈ L ∩ {0,1}* for a specific NP language L, but the security requirements on such a function are relaxed: we only require the pseudorandomness property when y ∈ L and only require the uniqueness property when y ∉ L, instead of requiring both pseudorandomness and uniqueness to hold simultaneously. We show that this notion can be realized under standard assumption.

Our motivation is the conjecture posed by Barak et al.[2], which states there exist resettably-sound resettable zero knowledge arguments for NP. The instance-dependent verifiable random functions is a powerful tool to tackle this problem. We first use them to obtain two interesting instance-dependent argument systems from the Barak’s public-coin bounded concurrent zero knowledge argument [1], and then, we

  1. 1

    Construct the first (constant round) zero knowledge arguments for NP enjoying a certain simultaneous resettability under standard hardness assumptions in the plain model, which we call bounded-class resettable ZK arguments with weak resettable-soundness Though the malicious party (prover or verifier) in such system is limited to a kind of bounded resetting attack, We put NO restrictions on the number of the total resets made by malicious party.

     
  2. 2

    show that, under standard assumptions, if there exist public-coin concurrent zero knowledge arguments for NP, there exist the resettably-sound resetable zero knowledge arguments for NP.

     

Keywords

instance-dependent verifiable random functions simultaneous resettability zero knowledge 

References

  1. 1.
    Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. of IEEE FOCS 2001, pp. 106–115 (2001)Google Scholar
  2. 2.
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably sound Zero Knowledge and its Applications. In: Proc. of IEEE FOCS 2001, pp. 116–125 (2001)Google Scholar
  3. 3.
    Barak, B., Goldreich, O.: Universal Arguments and Their Applications. In: Proc. of IEEE CCC 2002, pp. 194–203 (2002)Google Scholar
  4. 4.
    Blum, M.: How to Prove a Theorem so No One Else can Claim It. In: Proc. of ICM’86, pp. 1444–1451 (1986)Google Scholar
  5. 5.
    Barak, B., Lindell, Y., Vadhan, S.: Lower Bounds for Non-Black-Box Zero Knowledge. In: Proc. of IEEE FOCS 2003, pp. 384–393 (2003)Google Scholar
  6. 6.
    Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of Pseudo Random Bits. In: Proc. of IEEE FOCS 1982, pp. 112–117 (1982)Google Scholar
  7. 7.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Proc. of IEEE FOCS 2001, pp. 136–145 (2001)Google Scholar
  8. 8.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero Knowledge. In: Proc. of ACM STOC 2000, pp. 235–244 (2000)Google Scholar
  9. 9.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Concurrent Zero-Knowledge requires Ω(logn) rounds. In: Proc. of ACM STOC 2001, pp. 570–579 (2001)Google Scholar
  10. 10.
    Dwork, C., Naor, M.: Zaps and Their Applications. In: Proc. of IEEE FOCS 2000, pp. 283–293 (2000)Google Scholar
  11. 11.
    Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: Proc. of ACM STOC 1998, pp. 409–418 (1998)Google Scholar
  12. 12.
    Feige, U., Shamir, A.: Witness Indistinguishability and Witness Hiding Protocols. In: Proc. of ACM STOC 1990, pp. 416–426 (1990)Google Scholar
  13. 13.
    Goldreich, O.: Foundation of Cryptography-Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  14. 14.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or All languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM. J. Computing 18(1), 186–208 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A Pseudorandom Generator from Any One-Way Functions. SIAM Journal on Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Itoh, T., Ohta, Y.: A language-dependent cryptographic primitive. Journal of Cryptology 10(1), 37–49 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.P.: Concurrent Zero Knowledge Without Complexity Assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Micali, S., Rivest, R.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: Proc. of IEEE FOCS, pp. 120–130 (1999)Google Scholar
  24. 24.
    Naor, M.: Bit Commitment using Pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991)zbMATHCrossRefGoogle Scholar
  25. 25.
    Yao, A.: Theory and Applications of Trapdoor Functions. In: Proc. of IEEE FOCS 1982, pp. 80–91 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yi Deng
    • 1
  • Dongdai Lin
    • 1
  1. 1.The state key laboratory of information security, Institute of softwareChinese Academy of sciencesBeijingChina

Personalised recommendations