Revisiting the Efficiency of Malicious Two-Party Computation

  • David P. Woodruff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)


In a recent paper Mohassel and Franklin study the efficiency of secure two-party computation in the presence of malicious behavior. Their aim is to make classical solutions to this problem, such as zero-knowledge compilation, more efficient. The authors provide several schemes which are the most efficient to date. We propose a modification to their main scheme using expanders. Our modification asymptotically improves at least one measure of efficiency of all known schemes. We also point out an error, and improve the analysis of one of their schemes.


secure function evaluation malicious model efficiency expander graphs 


  1. 1.
    Alon, N.: Eigenvalues and expanders. Combinatorica 6, 86–96 (1986)Google Scholar
  2. 2.
    Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.: Construction of asymptotically good, low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory 38, 509–516 (1992)CrossRefGoogle Scholar
  3. 3.
    Alon, N., Milman, V.D.: Eigenvalues, expanders, and superconcentrators. In: FOCS (1984)Google Scholar
  4. 4.
    Alon, N., Spencer, J.: The Probabilistic Method (2000)Google Scholar
  5. 5.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: STOC (1996)Google Scholar
  6. 6.
    Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: STOC (2002)Google Scholar
  7. 7.
    Chung, F.: Spectral Graph Theory. CBMS Lecture Notes. AMS Publications, New York (1997)zbMATHGoogle Scholar
  8. 8.
    Chung, F., Lu, L.: Concentration inequalities and martingale inequalities - a survey. Internet Mathematics (to appear)Google Scholar
  9. 9.
    Diestel, R.: Graph Theory. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    Dinur, I.: The PCP Theorem by Gap Amplification. In: STOC (2006)Google Scholar
  11. 11.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM (1985)Google Scholar
  12. 12.
    Feller, W.: Stirling’s Formula. In: An Introduction to Probability Theory and its Applications vol. 1, 3rd edn., pp. 50–53. Wiley, New York (1968)Google Scholar
  13. 13.
    Friedman, J.: A Proof of Alon’s Second Eigenvalue Conjecture. In: STOC (2003)Google Scholar
  14. 14.
    Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcentrators. JCSS 22(3), 407–420 (1981)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Goldreich, O., Micali, S., Rackoff, C.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proofs. In: FOCS (1986)Google Scholar
  16. 16.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)Google Scholar
  17. 17.
    Goldreich, O.: Foundations of cryptography - volume 2 (2004)Google Scholar
  18. 18.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Kilian, J., Petrank, E.: An efficient noniteractive zero-knowledge proof system for NP with general assumptions. Journal of Cryptology 11, 1–27 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kiraz, M., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s garbled circuit construction. In: The 27th Symposium on information theory in the BENELUX, WIC (2006)Google Scholar
  21. 21.
    Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. Cryptology ePrint Archive, Report 2004/175 (2004)Google Scholar
  22. 22.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. Eurocrypt 2007, to appear in these proceedings(2007)Google Scholar
  23. 23.
    Lubotzky, A., Phillips, R., Sarnak, P.: Explicit expanders and the Ramanujan conjectures. In: STOC (1986), See also: Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)Google Scholar
  24. 24.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party computation system. In: Usenix (2004)Google Scholar
  25. 25.
    Margulis, G.A.: Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and superconcentrators. Problemy Peredachi Informatsii 24, 51–60 (1988), English translation in Problems of Information Transmission 24, 39–46 (1988)MathSciNetGoogle Scholar
  26. 26.
    Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Naor, M., Pinkas, B.: Efficient oblivious transfer. In: SODA (2001)Google Scholar
  28. 28.
    Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report Tech., Memo. TR-81, Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  30. 30.
    Robbins, H.: A remark of Stirling’s Formula. Amer. Math. Monthly 62, 26–29 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tanner, R.M.: Explicit Construction of Concentrators from Generalized N-Gons. SIAM J. Alg. Discr. Math. 5, 287–293 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Trevisan, L.: Inapproximability of Combinatorial Optimization Problems. Optimisation Combinatiore 2 (2005)Google Scholar
  33. 33.
    Woodruff, D.: Revisiting the efficiency of malicious two-party computation. Cryptology ePrint Archive, Report 2006/397 (2006)Google Scholar
  34. 34.
    Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David P. Woodruff
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMITUSA

Personalised recommendations