Advertisement

General Ad Hoc Encryption from Exponent Inversion IBE

  • Xavier Boyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)

Abstract

Among the three broad classes of Identity-Based Encryption schemes built from pairings, the exponent inversion paradigm tends to be the most efficient, but also the least extensible: currently there are no hierarchical or other known extension of IBE based on those schemes. In this work, we show that such extensions can be realized from IBE systems that conform to a certain abstraction of the exponent inversion paradigm. Our method requires no random oracles, and is simple and efficient.

Keywords

Random Oracle Random Oracle Model Fuzzy Identity Cryptology ePrint Archive Bilinear Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2001), Extended abstract in: Advances in Cryptology—CRYPTO 2001CrossRefMathSciNetGoogle Scholar
  5. 5.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Cheng, Z., Malone-Lee, J., Smart, N.P.: An efficient ID-KEM based on the Sakai-Kasahara key construction. Cryptology ePrint Archive, Report 2005/224 (2005), http://eprint.iacr.org/2005/224/
  8. 8.
    Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, p. 360. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security—CCS’06 (2006)Google Scholar
  13. 13.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Transactions on Fundamentals E85-A(2), 481–484 (2002)Google Scholar
  15. 15.
    Naccache, D.: Secure and practical identity-based encryption. Cryptology ePrint Archive, Report 2005/369 (2005), http://eprint.iacr.org/2005/369/
  16. 16.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Sakai, R., Kasahara, M.: ID based cryptosystems with pairing over elliptic curve. Cryptology ePrint Archive, Report 2003/054 (2003), http://eprint.iacr.org/2003/054/
  18. 18.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystem based on pairing. In: Symposium on Cryptography and Information Security—SCIS 2000, Okinawa, Japan (2000)Google Scholar
  19. 19.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for complex hierarchies with applications to forward security and broadcast encryption. In: ACM Conference on Computer and Communications Security—CCS 2004, pp. 354–363 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xavier Boyen
    • 1
  1. 1.Voltage Inc.Palo Alto

Personalised recommendations