Advertisement

An L (1/3 + ε) Algorithm for the Discrete Logarithm Problem for Low Degree Curves

  • Andreas Enge
  • Pierrick Gaudry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)

Abstract

The discrete logarithm problem in Jacobians of curves of high genus g over finite fields \(\mathbb {F}_q\) is known to be computable with subexponential complexity \(L_{q^g}(1/2, O(1))\). We present an algorithm for a family of plane curves whose degrees in X and Y are low with respect to the curve genus, and suitably unbalanced. The finite base fields are arbitrary, but their sizes should not grow too fast compared to the genus. For this family, the group structure can be computed in subexponential time of \(L_{q^g}(1/3, O(1))\), and a discrete logarithm computation takes subexponential time of \(L_{q^g}(1/3+ \varepsilon, o(1))\) for any positive ε. These runtime bounds rely on heuristics similar to the ones used in the number field sieve or the function field sieve algorithms.

Keywords

Prime Divisor Discrete Logarithm Hyperelliptic Curve Smith Normal Form Smooth Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adleman, L.M., DeMarrais, J., Huang, M.-D.: A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 28–40. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Bender, R.L., Pomerance, C.: Rigorous discrete logarithm computations in finite fields via smooth polynomials. In: Buell, D.A., Teitelbaum, J.T. (eds.) Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin. Studies in Advanced Mathematics, vol. 7, pp. 221–232. American Mathematical Society, Providence (1998)Google Scholar
  3. 3.
    Couveignes, J.-M.: Algebraic groups and discrete logarithm. In: Public-key cryptography and computational number theory, pp. 17–27. Walter de Gruyter, Berlin (2001)Google Scholar
  4. 4.
    Diem, C.: An index calculus algorithm for plane curves of small degree. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 543–557. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Enge, A.: Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subexponential time. Math. Comp. 71, 729–742 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Enge, A., Gaudry, P.: A general framework for subexponential discrete logarithm algorithms. Acta Arith. 102, 83–103 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Enge, A., Stein, A.: Smooth ideals in hyperelliptic function fields. Math. Comp. 71, 1219–1230 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for small genus hyperelliptic index calculus. Math. Comp. 76, 475–492 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Haché, G.: Construction effective de codes géométriques. PhD thesis, Université de Paris VI (1996)Google Scholar
  11. 11.
    Haffner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation of class groups. J. Amer. Math. Soc. 2(4), 837–850 (1989)MathSciNetGoogle Scholar
  12. 12.
    Heß, F.: Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symbolic Comput. 33, 425–445 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Heß, F.: Computing relations in divisor class groups of algebraic curves over finite fields. Preprint (2004)Google Scholar
  14. 14.
    Manstavičius, E.: Semigroup elements free of large prime factors. In: Schweiger, F., Manstavičius, E. (eds.) New Trends in Probability and Statistic, pp. 135–153 (1992)Google Scholar
  15. 15.
    Müller, V., Stein, A., Thiel, C.: Computing discrete logarithms in real quadratic congruence function fields of large genus. Math. Comp. 68(226), 807–822 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Storjohann, A.: Algorithms for Matrix Canonical Forms. PhD thesis, Eidgenössische Technische Hochschule Zürich (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Enge
    • 1
  • Pierrick Gaudry
    • 2
  1. 1.INRIA Futurs & Laboratoire d’Informatique (CNRS/UMR 7161)École polytechniquePalaiseau CedexFrance
  2. 2.LORIA (CNRS/UMR 7503), Campus ScientifiqueVandœuvre-lés-Nancy CedexFrance

Personalised recommendations