Skip to main content

A Survey on Coding of Static and Dynamic 3D Meshes

  • Chapter
Book cover Three-Dimensional Television

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mäntylä, An Introduction to Solid Modeling, Computer Science Press, College Park, MD, 1988.

    Google Scholar 

  2. M. Alexa and W. Müller, Representing animations by principal components, Computer Graphics Forum, Vol. 19(3), 2000.

    Google Scholar 

  3. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ of Illinois Press, 1949. ISBN 0-252-72548-4.

    Google Scholar 

  4. H. Nyquist, Certain topics in telegraph transmission theory, Transaction AIEE, Vol. 47, pp. 617–644, April 1928. Reprint as classic paper in: Proceedings IEEE, Vol. 90, No. 2, Febary 2002.

    Google Scholar 

  5. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (2 Ed.), Prentice-Hall, New Jersey, 1999. ISBN 0137549202.

    Google Scholar 

  6. N. S. Jayant and P. Noll, digital coding of waveforms, Prentice-Hall Int., London, 1984.

    Google Scholar 

  7. D. Marpe, H. Schwarz, and T. Wiegand, Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard, IEEE Transaction on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 620–636, 2003.

    Article  Google Scholar 

  8. G. Taubin and J. Rossignac, Geometric compression through topological surgery, ACM Transactions on Graphics, Vol. 17, No. 2, pp. 84–115, 1998.

    Article  Google Scholar 

  9. J. Rossignac, Edgebreaker: Connectivity compression for triangle meshes, IEEE Transaction on Visualization and Computer Graphics, Vol. 5, No. 1, pp. 47–61, 1999.

    Article  Google Scholar 

  10. M. Isenburg and J. Snoeyink, Face fixer: Compressing polygon meshes with properties. Proceedings of SIGGRAPH 2000, pp. 263–270, July 2000.

    Google Scholar 

  11. C. Touma and C. Gotsman, Triangle mesh compression. Proceedings Graphics Interface 98, pp. 26–34, 1998.

    Google Scholar 

  12. M. Deering, Geometry compression. In SIGGRAPH ’95 Conference Proceedings, pp. 13–20, 1995.

    Google Scholar 

  13. S. Gumhold and W. Straßer,Real time compression of triangle mesh connectivity. Computer Graphics Proceedings, Annual Conference Series, 1998 (ACM SIGGRAPH ’98 Proceedings), pp. 133–140, July 1998.

    Google Scholar 

  14. J. Rossignac and A. Szymczak, Wrap and Zip: Linear Decoding of planar triangle graphs, IEEE Transaction Visualization Computer Graphics 5(1), 47–61, 1999.

    Article  MathSciNet  Google Scholar 

  15. M. Isenburg and J. Snoeyink, Compressing the property mapping of polygon meshes. Proceedings of Pacific Graphics 2001, pp. 4–11, October 2001.

    Google Scholar 

  16. P. Alliez and M. Desbrun, Valence-driven connectivity encoding of 3D meshes, Computer Graphics Forum, 20:480–489, 2001.

    Article  Google Scholar 

  17. Z. Karni and C. Gotsman, Spectral compression of mesh geometry. Computer Graphics (Proceedings of SIGGRAPH), pp. 279–286, 2000.

    Google Scholar 

  18. X. Gu, S. J. Gortler and H. Hoppe Geometry images. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 355–361, ACM press, 2000.

    Google Scholar 

  19. H. Hoppe, Progressive meshes. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108, August 1996.

    Google Scholar 

  20. J. Popovic and H. Hoppe. Progressive simplicial complexes. In Computer Graphics (SIGGRAPH’97 Proceedings), (1997).

    Google Scholar 

  21. G. Taubin, A. Gueziec, W. Horn and F. Lazarus, Progressive forest split compression. In SIGGRAPH’98, August 1998.

    Google Scholar 

  22. R. Pajarola and J. Rossignac, Compressed Progressive Meshes, Technical Report: GIT-GVU-99-05, GVU Center, Georgia Institute of Technology, January 1999.

    Google Scholar 

  23. R. Ronfard and J. Rossignac, Full range approximation of triangulated polyhedra. In Proceedings of Eurographics ’96, pp. 67–76, 1996

    Google Scholar 

  24. M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216, 1997.

    Google Scholar 

  25. M. Garland and Y. Zhou, Quadric-based simplification in any dimension, ACM Transactions on Graphics, Vol. 24, No. 2, 2005.

    Google Scholar 

  26. P. Lindstrom and G. Turk, Fast and memory efficient polygonal simplification, Proceedings of the Conference on Visualization ’98, Research Triangle Park, North Carolina, United States, pp. 279–286, 1998.

    Google Scholar 

  27. N. Dyn, D. Levin, and John A. Gregory, A butterfly subdivision scheme for surface interpolation with tension control, ACM Transactions on Graphics, 9(2):160–169, April 1990.

    Google Scholar 

  28. P. Alliez and M. Desbrun, Progressive compression for lossless transmission of triangle meshes. In SIGGRAPH ’2001 Conference Proceedings, pp. 198–205, 2001.

    Google Scholar 

  29. M. Lounsbery, T. D. Derose, and J. Warren, Multiresolution Analysis for surfaces of arbitrary topological type, ACM Transactions on Graphics Vol. 16, No. 1 , pp. 34–73, 1997. Originally available as TR-93-10-05, October, 1993, Department of Computer Science and Engineering, University of Washington.

    Google Scholar 

  30. P. Schröder and W. Sweldens, Digital Geometry Processing, Course Notes, ACM SIGGRAPH, 2001.

    Google Scholar 

  31. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

    Google Scholar 

  32. E. J. Stollnitz, T. DeRose and D. H. Salesi, Wavelets for Computer Graphics: Theory and Applications, Morgan Kaufmann Publishers Inc., 1996.

    Google Scholar 

  33. D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens, Subdivision for Modeling and Animation, Course Notes, ACM SIGGRAPH, 2000.

    Google Scholar 

  34. A. Khodakovsky, P. Schröder and W. Sweldens, Progressive geometry compression Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 271–278, July 2000.

    Google Scholar 

  35. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar and D. Dobkin, MAPS: Multiresolution adaptive parameterization of surfaces. In Proceedings of ACM SIGGRAPH 98, 95–104 1998.

    Google Scholar 

  36. C. Loop, Smooth Subdivision Surfaces Based on Triangles. Master’s Thesis, University of Utah, August 1987.

    Google Scholar 

  37. A. Said and W. A. Pearlman, An image multiresolution representaion for lossless and lossy compression, IEEE Transaction on Image Processing, Vol. 5, pp. 1303–1310, September 1996.

    Article  Google Scholar 

  38. P. Cignoni , C. Rocchini , and Scopigno, R., Metro: Measuring error on simplified surfaces. Computer Graphics Forum 17, 2, 167–174, 1998.

    Article  Google Scholar 

  39. A. Khodakovsky and I. Guskov, Normal Mesh Compression. submitted for publication, http://www.multires.caltech.edu/pubs/compression.pdf.

    Google Scholar 

  40. I. Guskov, K. Vidim, W. Sweldens and P. Schröder, Normal meshes, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 95–102, July 2000.

    Google Scholar 

  41. F. Morán and N. García, Comparison of wavelet-based three-dimensional model coding techniques, IEEE Transaction on Circuits and Systems for Video Technology, Vol. 14, No. 7, July 2004.

    Google Scholar 

  42. M. Isenburg and P. Lindstrom, Streaming meshes. Proceedings of Visualization’05, pp. 231–238, October 2005.

    Google Scholar 

  43. H. Vo, S. Callahan, P. Lindstrom, V. Pascucci, and C. Silva, Streaming simplification of tetrahedral meshes, IEEE Transactions on Visualization and Computer Graphics, Vol. 13, No. 1, pp. 145–155, January/February 2007.

    Google Scholar 

  44. M. Isenburg, P. Lindstrom, J. Snoeyink, Streaming compression of triangle meshes. Proceedings of 3rd Symposium on Geometry Processing, pp. 111–118, July 2005.

    Google Scholar 

  45. M. Isenburg, P. Lindstrom, S. Gumhold and J. Shewchuk, Streaming compression of tetrahedral volume meshes. Proceedings of Graphics Interface 2006, pp. 115–121, June 2006.

    Google Scholar 

  46. M. Bourges-Sevenier and E. S. Jang, An introduction to the MPEG-4 animation framework extension, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, pp. 928–936, 2004.

    Article  Google Scholar 

  47. E. S. Jang, J. D. K. Kim, S. Y. Jung, M. J. Han, S. O. Woo and S. J. Lee, Interpolator data compression for MPEG-4 animation, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, 2004.

    Google Scholar 

  48. L. Ibarria and J. Rossignac, Dynapack: Space-time compression of the 3d animations of triangle meshes with fixed connectivity. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003.

    Google Scholar 

  49. L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, Out-Of-Core compression and decompression of large n-dimensional scalar fields. In Proceedings of Eurographics 2003, 2003.

    Google Scholar 

  50. N. Stefanoski and J. Ostermann, Connectivity-guided predictive compression of dynamic 3D meshes. Proceedings of ICIP ’06 – IEEE International Conference on Image Processing, Atlanta, October 2006.

    Google Scholar 

  51. J. Rossignac, A. Safonova and A. Szymczak, 3D compression made simple: Edgebreaker on a corner table. Proceedings of Shape Modeling International Conference, pp. 278–283, 2001.

    Google Scholar 

  52. J. E. Lengyel, Compression of time-dependent geometry. In Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 89–95, ACM Press, 1999.

    Google Scholar 

  53. J. Zhang and C. B. Owen, Octree-based Animated Geomtery Compression, DCC’04, Data Compression Conference, Snowbird, Utah, USA, pp. 508–517, 2004.

    Google Scholar 

  54. K. Müller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand, Rate-distortion-optimized predictive compression of dynamic 3D mesh sequences, Invited Paper, Signal Processing: Image Communication, Vol. 21, is. 9, pp. 812–828, Special Issue on Interactive representation of still and dynamic scenes, October 2006.

    Google Scholar 

  55. K. Müller, A. Smolic, M. Kautzner, P. Eisert and T. Wiegand, Predictive compression of dynamic 3D meshes. In Proceedings of International Conference on Image Processing, pp. 621–624, 2005.

    Google Scholar 

  56. J. Zhang and C. B. Owen, Hybrid coding for animated polygonal meshes: Combining delta and octree, International Conference on Information Technology: Coding and Computing (ITCC’05) – Vol. I, pp. 68–73, 2005.

    Article  Google Scholar 

  57. D. Huttenlocher, G. Klanderman, and W. Rucklidge, Comparing images using the hausdorff distance, IEEE Journal of Pattern Analysis and Machine Intelligence, Vol. 15, No. 9, pp. 850–863, 1993.

    Article  Google Scholar 

  58. N. Aspert, D. Santa-Cruz, and T. Ebrahimi, MESH: Measuring errors between surfaces using the Hausdorff distance. Proceedings of the IEEE International Conference on Multimedia and Expo, Vol. I, pp. 705–708, 2002.

    Google Scholar 

  59. A. Shamir and V. Pascucci, Temporal and spatial level of details for dynamic meshes. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 77–84, ACM Press, 2001.

    Google Scholar 

  60. I. Guskov and A. Khodakovsky, Wavelet compression of parametrically coherent mesh sequences. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 183–192, ACM Press, 2004.

    Google Scholar 

  61. A. Mohr and M. Gleicher, Deformation Sensitive Decimation, Technical Report 4/7/2003, University of Wisconsin, Madison,yv2003.

    Google Scholar 

  62. S. Kircher and M. Garland, Progressive Multiresolution Meshes for Deforming Surfaces, ACM/Eurographics Symposium on Computer Animation, pp. 191–200, 2005.

    Google Scholar 

  63. Z. Karni and C. Gotsman, Compression of Soft-Body Animation Sequences, Elsevier Computer & Graphics 28, pp. 25–34, 2004.

    Article  Google Scholar 

  64. M. Sattler, R. Sarlette, and R. Klein, Simple and Efficient Compression of Animation Sequences, Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2005.

    Google Scholar 

  65. N. Stefanoski, X. Liu, P. Klie, and J. Ostermann, Scalable Linear Predictive Coding of Time-Consistent 3D Mesh Sequences, submitted to 3DTV CON – The True Vision, Capture, Transmission, and Display of 3D Video, Kos Island, Greece, May 2007.

    Google Scholar 

  66. I. Guskov, W. Sweldens, and P. Schröder, Multiresolution signal processing for meshes. Proceedings of SIGGRAPH (1999), pp. 325–334, 1999.

    Google Scholar 

  67. H. M. Briceno, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe, Geometry videos: A new representation for 3d animations. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 136–146. Eurographics Association, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smolic, A. et al. (2008). A Survey on Coding of Static and Dynamic 3D Meshes. In: Ozaktas, H.M., Onural, L. (eds) Three-Dimensional Television. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72532-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72532-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72531-2

  • Online ISBN: 978-3-540-72532-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics