Skip to main content

An Immaterial Pseudo-3D Display with 3D Interaction

  • Chapter
Three-Dimensional Television

Part of the book series: Signals and Communication Technology ((SCT))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiVerdi S, Rakkolainen I, Höllerer T, Olwal A (2006). A Novel Walk-through 3D Display. Proc. SPIE Electronic Imaging, Stereoscopic Displays and Virtual Reality Systems XIII, San Jose, CA, USA, January 15–18, 2006, SPIE Vol. 6055, pp. 1–10.

    Google Scholar 

  2. Palovuori K, Rakkolainen I (2004). FogScreen. U.S. patent 6,819,487 B2. November 16, 2004.

    Google Scholar 

  3. Rakkolainen I, Palovuori K (2002). A Walk-thru Screen. IS&T/SPIE Electronic Imaging 2002, Proc. of Conference on Projection Displays VIII, San Jose, CA, USA, January 23–24, 2002, pp. 17–22.

    Google Scholar 

  4. FogScreen Inc. (2007). http://www.fogscreen.com. March 2007.

    Google Scholar 

  5. Pastoor S, Wopking M (1997). 3-D Displays: A Review of Current Technologies. Displays, Vol. 17, No. 2, April 1, 1997, pp. 100–110}.

    Article  Google Scholar 

  6. Halle M (1997). Autostereoscopic Displays and Computer Graphics. Computer Graphics, ACM SIGGRAPH, Vol. 31, No. 2, May 1997, pp. 58–62.

    Article  Google Scholar 

  7. Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001). Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications, Vol. 25, No. 6, November–December 2001, pp. 24–35.

    Google Scholar 

  8. Sutherland I (1965). The Ultimate Display. Proc. of IFIP Congress 1965, Vol. 2, pp. 506–508.

    Google Scholar 

  9. Rekimoto J, Matsushita N (1997). Perceptual Surfaces: Towards a Human and Object Sensitive Interactive Display. In Workshop on Perceptual User Interfaces (PUI’97), October 1997, pp. 30–32.

    Google Scholar 

  10. Ullmer B, Ishii H (1997). The MetaDESK: Models and Prototypes for Tangible User Interfaces. Proc. of the ACM UIST’97 Symposium, pp. 223–232.

    Google Scholar 

  11. Leibe B, Starner T, Ribarsky W, Wartell Z, Krum D, Singletary B, Hodges L (2000). The Perceptive Workbench: Towards Spontaneous and Natural Interaction in Semi-Immersive Virtual Environments. Proc. of IEEE Virtual Reality 2000, March 2000, New Brunswick, NJ, USA, pp. 13–20.

    Google Scholar 

  12. dnp Holo Screen (2007). DNP, http://www.dnp.dk/. March 2007.

    Google Scholar 

  13. HoloClear (2007). HoloDisplays, http://www.holodisplays.com/. March 2007.

    Google Scholar 

  14. Wilson A (2004). TouchLight: An Imaging Touch Screen and Display for Gesture-Based Interaction, Proc. of ICMI’04, pp. 69–76.

    Google Scholar 

  15. Hirakawa M, Koike S (2004). A Collaborative Augmented Reality System Using Transparent Display. Proc. of ISMSE’04, pp. 410–416.

    Google Scholar 

  16. Olwal A, Lindfors C, Gustafsson J, Kjellberg T, Mattson L (2005). ASTOR: An Autostereoscopic Optical See-through Augmented Reality System. Proc. of IEEE and ACM ISMAR 2005, pp. 24–27.

    Google Scholar 

  17. Just PC (1899). Ornamental Fountain. U.S. patent 620,592. March 7, 1899.

    Google Scholar 

  18. Sugihara Y, Tachi S (2000). Water Dome – An Augmented Environment. Proc. of the Information Visualization Conference, London, July 2000, pp. 548–553.

    Google Scholar 

  19. Aquatique (2007). Aquatique Show International, http://www.aquatic-show. com/. March 2007.

    Google Scholar 

  20. Fantasmic Show (2007). Disney, http://disneyworld.disney.go. com/wdw/entertainment/entertainmentDetail? id = FantasmicEntertainmentPage. March 2007.

    Google Scholar 

  21. Desert Rain Project (2007). http://www.crg.cs.nott.ac.uk/events/rain/. March 2007.

    Google Scholar 

  22. Mee Fog Inc (2007). http://www.meefog.com/. March 2007.

    Google Scholar 

  23. IO2 Technology LLC (2007). Heliodisplay, http://www.io2technology.com/. March 2007.

    Google Scholar 

  24. Rakkolainen I, Erdem T, Erdem Ç, Özkan M, Laitinen M (2006). Interactive “Immaterial” Screen for Performing Arts. ACM Multimedia 2006, Interactive Arts Program, Santa Barbara, CA, USA, October 23–27, 2006.

    Google Scholar 

  25. NEC (2007). WT-610 Short Throw Projector, http://www.nec.co.uk/NEW- MultiSync-WT610.aspx. March 2007.

    Google Scholar 

  26. Infitec GmbH (2007). Infitec Interference Filters, http://www.infitec.net/. March 2007.

    Google Scholar 

  27. Bailey M, Clark D (1998). Using ChromaDepth to Obtain Inexpensive Single-image Stereovision for Scientific Visualization. Journal of Graphics Tools, Vol. 3, No. 3, pp. 1–9.

    Google Scholar 

  28. DepthQ 3D Projector (2007). Infocus, http://depthq.com/. March 2007.

    Google Scholar 

  29. WorldViz PPT 3D Optical Tracker (2007). http://www.worldviz.com/ppt/. March 2007.

    Google Scholar 

  30. Krueger W, Froehlich B (1994). The Responsive Workbench. IEEE Computer Graphics and Applications, Vol. 14, No. 3, pp. 12–15.

    Article  Google Scholar 

  31. The Stanford 3D Scanning Repository (2007). http://www-graphics.stanford. edu/data/3Dscanrep/.March 2007.

    Google Scholar 

  32. Rekimoto J, Saitoh M (1999). Augmented Surfaces: A Spatially Continuous Work Space for Hybrid Computing Environments. Proc. of ACM CHI.

    Google Scholar 

  33. Taylor R (1998). VRPN: Virtual Reality Peripheral Network, http://www.cs. unc.edu/Research/vrpn/.

    Google Scholar 

  34. Baraff D (1989). Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies. Proc. ACM SIGGRAPH, pp. 223–232.

    Google Scholar 

  35. Iwata H, Yano H, Fukushima H, Noma H (2005). CirculaFloor: A Locomotion Interface Using Circulation of Movable Tiles. Proc. IEEE Virtual Reality 2005, Bonn, Germany, March 12–16, 2005, pp. 223–230}.

    Google Scholar 

  36. Kim S, Ishii M, Koike Y, Sato M (2000). Development of Tension Based Haptic Interface and Possibility of its Application to Virtual Reality. Proc. of ACM VRST, pp. 199–205.

    Google Scholar 

  37. Rakkolainen I, Laitinen M, Piirto M, Landkammer J, Palovuori K (2005). The Interactive FogScreen. A Demonstration and Associated Abstract at ACM SIGGRAPH 2005 Program: Emerging Technologies, Los Angeles, CA, USA, July 31–August 4, 2005. See also http://ilab.cs.ucsb.edu/projects/ismo/fogscreen.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DiVerdi, S., Olwal, A., Rakkolainen, I., Höllerer, T. (2008). An Immaterial Pseudo-3D Display with 3D Interaction. In: Ozaktas, H.M., Onural, L. (eds) Three-Dimensional Television. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72532-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72532-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72531-2

  • Online ISBN: 978-3-540-72532-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics