Skip to main content

Elementary Differences Among Jump Hierarchies

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

  • 1134 Accesses

Abstract

It is shown that Th(H 1) ≠ Th (H n ) holds for every n > 1, where H m is the upper semi-lattice of all high m computably enumerable (c.e.) degrees for m > 0, giving a first elementary difference among the highness hierarchies of the c.e. degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper, S.B.: On a theorem of C.E.M. Yates (handwritten notes) (1974a)

    Google Scholar 

  2. Cooper, S.B.: Minimal pairs and high recursively enumerable degrees. J. Symbolic Logic 39, 655–660 (1974b)

    Article  MathSciNet  Google Scholar 

  3. Cooper, S.B., Li, A.: Splitting and nonsplitting, II: A low2 c.e. degree above which 0′ is not splittable. The Journal of Symbolic Logic 67(4) (2002)

    Google Scholar 

  4. Downey, R.G., Lempp, S., Shore, R.A.: Highness and bounding minimal pairs. Math. Logic Quarterly 39, 475–491 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Harrington, L.: On Cooper’s proof of a theorem of Yates, Parts I and II (handwritten notes) (1976)

    Google Scholar 

  6. Carl, G., et al.: A join theorem for the computably enumerable degrees. Transactions of the American Mathematical Society 356(7), 2557–2568 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Harrington, L.: Plus cupping in the recursively enumerable degrees (handwritten notes) (1978)

    Google Scholar 

  8. Lachlan, A.H.: On a problem of G.E. Sacks. Proc. Amer. Math. Soc. 16, 972–979 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lachlan, A.H.: A recursively enumerable degree which will not split over all lesser ones. Ann. Math. Logic 9, 307–365 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lachlan, A.H.: Bounding minimal pairs. J. Symbolic Logic 44, 626–642 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin, D.A.: On a question of G.E. Sacks. J. Symbolic Logic 31, 66–69 (1966a)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martin, D.A.: Classes of recursively enumerable sets and degrees of unsolvability, 2. Math. Logik Grundlag. Math. 12, 295–310 (1966b)

    Article  MATH  Google Scholar 

  13. Miller, D.: High recursively enumerable degrees and the anti-cupping property. In: Lerman, M., Schmerl, J.H., Soare, R.I. (eds.) Logic Year 1979–1980. Lecture Notes in Mathematics, vol. 859, Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  14. Nies, A., Shore, R.A., Slaman, T.A.: Interpretability and definability in the recursively enumerable degrees. Proc. London Math. (3) 77(2), 241–291 (1998)

    Article  MathSciNet  Google Scholar 

  15. Robinson, R.W.: Interpolation and embedding in the recursively enumerable degrees. Ann. of Math. (2) 93, 285–314 (1971a)

    Article  MathSciNet  Google Scholar 

  16. Robinson, R.W.: Jump restricted interpolation in the recursively enumerable degrees. Ann. of Math. (2) 93, 586–596 (1971b)

    Article  MathSciNet  Google Scholar 

  17. Sacks, G.E.: Recursive enumerability and the jump operator. Tran. Amer. Math. Soc. 108, 223–239 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sacks, G.E.: The recursively enumerable degrees are dense. Ann. of Math. (2) 80, 300–312 (1964)

    Article  MathSciNet  Google Scholar 

  19. Sacks, G.E.: On a theorem of Lachlan and Martin. Proc. Amer. Math. Soc. 18, 140–141 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shore, R.A.: The low m and low n r.e. degrees are not elementarily equivalent. Science in China, Series A (2004)

    Google Scholar 

  21. Shore, R.A., Slaman, T.A.: Working below a low2 recursively enumerable degree. Archive for Math. Logic 29, 201–211 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shore, R.A., Slaman, T.A.: Working below a high recursively enumerable degree. J. Symbolic Logic 58(3), 824–859 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, A. (2007). Elementary Differences Among Jump Hierarchies. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics