Skip to main content

The Strongest Nonsplitting Theorem

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

  • 1134 Accesses

Abstract

Sacks [14] showed that every computably enumerable (c.e.) degree ≥ 0 has a c.e. splitting. Hence, relativising, every c.e. degree has a Δ 2 splitting above each proper predecessor (by ’splitting’ we understand ’nontrivial splitting’). Arslanov [1] showed that 0’ has a d.c.e. splitting above each c.e. a < 0’. On the other hand, Lachlan [9] proved the existence of a c.e. a > 0 which has no c.e. splitting above some proper c.e. predecessor, and Harrington [8] showed that one could take a = 0’. Splitting and nonsplitting techniques have had a number of consequences for definability and elementary equivalence in the degrees below 0’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arslanov, M.M.: Structural properties of the degrees below 0’. Dokl. Akad. Nauk. SSSR 283, 270–273 (1985)

    MathSciNet  Google Scholar 

  2. Cooper, S.B.: On a theorem of C.E.M. Yates (handwritten notes) (1974)

    Google Scholar 

  3. Cooper, S.B.: The strong anti-cupping property for recursively enumerable degrees. J. Symbolic Logic 54, 527–539 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cooper, S.B.: Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies, K., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory Week, Proceedings, Oberwolfach, 1989. Lecture Notes in Mathematics, vol. 1432, pp. 57–110. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  5. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC Mathematics. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  6. Cooper, S.B., et al.: Bounding and nonbounding minimal pairs in the enumeration degrees. J. Symbolic Logic 70, 741–766 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Downey, R.G.: \(\Delta^0_2\) degrees and transfer theorems. Illinois J. Math. 31, 419–427 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Harrington, L.: Understanding Lachlan’s monster paper (handwritten notes) (1980)

    Google Scholar 

  9. Lachlan, A.H.: A recursively enumerable degree which will not split over all lesser ones. Ann. Math. Logic 9, 307–365 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lachlan, A.H., Shore, R.A.: The n-rea enumeration degrees are dense. Arch. Math. Logic 31, 277–285 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Miller, D.: High recursively enumerable degrees and the anti-cupping property. In: Lerman, M., Schmerl, J.H., Soare, R.I. (eds.) Logic Year 1979–80: University of Connecticut. Lecture Notes in Mathematics, vol. 859, pp. 1979–1980. Springer, Heidelberg (1981)

    Google Scholar 

  12. Odifreddi, P.G.: Classical Recursion Theory, vol. II. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  13. Posner, D.B., Robinson, R.W.: Degrees joining to 0’. J. Symbolic Logic 46, 714–722 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sacks, G.E.: On the degrees less than 0’. Ann. of Math. 77(2), 211–231 (1963)

    Article  MathSciNet  Google Scholar 

  15. Slaman, T.A., Steel, J.R.: Complementation in the Turing degrees. J. Symbolic Logic 54, 160–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Heidelberg (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Soskova, M.I., Cooper, S.B. (2007). The Strongest Nonsplitting Theorem. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics