Skip to main content

A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

Distance-hereditary graphs consist of the isometric graphs, and hence contain trees and cographs. First, a canonical and compact tree representation of the class is proposed. The tree representation can be constructed in linear time using two prefix trees. Usually, the prefix trees are used to maintain a set of strings. The prefix trees in our algorithm are used to maintain the neighbors for each vertex, which is new approach comparing to the other known results based on the lexicographically bread first search. Several efficient algorithms for the distance-hereditary graphs based on the canonical tree representation are proposed; linear time algorithms for graph recognition and graph isomorphism, and efficient enumeration algorithm. An efficient coding for the tree representation is also presented, which requires 4n bits for a distance-hereditary graph of n vertices, and 3n bits for a cograph. The results improve previously known upper bounds of the number of distance-hereditary graphs and cographs.

This work was partially done while the second and third authors were visiting ETH Zürich, Switzerland.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai, T., et al.: Discovering Frequent Substructures in Large Unordered Trees. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 47–61. Springer, Heidelberg (2003)

    Google Scholar 

  2. Bandelt, H.-J., Mulder, H.M.: Distance-Hereditary Graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Dragan, F.F.: A Linear-Time Algorithm for Connected r-Domination and Steiner Tree on Distance-Hereditary Graphs. Networks 31, 177–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  5. Bretscher, A., et al.: A Simple Linear Time LexBFS Cograph Recognition Algorithm. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 119–130. Springer, Heidelberg (2003)

    Google Scholar 

  6. Broersma, H.J., Dahlhaus, E., Kloks, T.: A linear time algorithm for minimum fill-in and treewidth for distance hereditary graphs. Discrete Applied Mathematics 99, 367–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, M.-S., Hsieh, S.-Y., Chen, G.-H.: Dynamic Programming on Distance-Hereditary Graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 344–353. Springer, Heidelberg (1997)

    Google Scholar 

  8. Chang, M.-S., et al.: Domination in distance-hereditary graphs. Discrete Applied Mathematics 116, 103–113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corneil, D.G.: Lexicographic Breadth First Search — A Survey. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 1–19. Springer, Heidelberg (2004)

    Google Scholar 

  10. Corneil, D.G., Perl, Y., Stewart, L.K.: A Linear Recognition Algorithm for Cographs. SIAM Journal on Computing 14(4), 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damiand, G., Habib, M., Paul, C.: A Simple Paradigm for Graph Recognition: Application to Cographs and Distance Hereditary Graphs. Theoretical Computer Science 263, 99–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Atri, A., Moscarini, M.: Distance-Hereditary Graphs, Steiner Trees, and Connected Domination. SIAM Journal on Computing 17(3), 521–538 (1988)

    Article  MathSciNet  Google Scholar 

  13. Geary, R., et al.: A Simple Optimal Representation for Balanced Parentheses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 159–172. Springer, Heidelberg (2004)

    Google Scholar 

  14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  15. Hammer, P.L., Maffray, F.: Completely Separable Graphs. Discrete Applied Mathematics 27, 85–99 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holder, L.B., Cook, D.J., Djoko, S.: Substructure Discovery in the SUBDUE System. In: Workshop on Knowledge Discovery in Databases, pp. 169–180. AAAI, Menlo Park (1994)

    Google Scholar 

  17. Howorka, E.: A Characterization of Distance-Hereditary Graphs. Quart. J. Math. Oxford 28, 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsieh, S.-Y., et al.: Efficient Algorithms for the Hamiltonian Problem on Distance-Hereditary Graphs. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 77–86. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. In: Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Knuth, D.E.: Generating All Trees. The Art of Computer Programming, vol. 4. Addison-Wesley, Reading (2005)

    Google Scholar 

  21. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1998)

    Google Scholar 

  22. Munro, J.I., Raman, V.: Succinct Representation of Balanced Parentheses, Static Trees and Planar graphs. In: Proc. 38th ACM Symp. on the Theory of Computing, pp. 118–126. ACM Press, New York (1997)

    Google Scholar 

  23. Munro, J.I., Raman, V.: Succinct Representation of Balanced Parentheses and Static Trees. SIAM Journal on Computing 31, 762–776 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakano, S., Uno, T.: Constant Time Generation of Trees with Specified Diameter. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 33–45. Springer, Heidelberg (2004)

    Google Scholar 

  25. Nakano, S.-I.: Efficient Generation of Plane Trees. Information Processing Letters 84(3), 167–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nicolai, F., Szymczak, T.: Homogeneous Sets and Domination: A Linear Time Algorithm for Distance-Hereditary Graphs. Networks 37(3), 117–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic Aspects of Vertex Elimination on Graphs. SIAM Journal on Computing 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society (2003)

    Google Scholar 

  29. Zaki, M.J.: Efficiently Mining Frequent Trees in a Forest. In: 8th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 71–80. ACM Press, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakano, Si., Uehara, R., Uno, T. (2007). A New Approach to Graph Recognition and Applications to Distance-Hereditary Graphs. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics