Skip to main content

Vibronic Mechanisms for Charge Transport and Migration Through DNA and Single Molecules

  • Chapter
Book cover Charge Migration in DNA

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In Chap. 6, Asai and Shimazaki discuss the vibronic mechanisms of charge transport and migration in a single DNA molecule. They discuss in detail theoretical studies in both the weak and in the strong coupling limit. Comparative arguments between transport theory and hole transfer reaction theory follow these discussions. While both the elastic and the hopping conduction mechanisms are found in DNA, the former may be very difficult to observe unless the DNA molecule could be short enough, because of the large energy gap between the metallic electrode and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Shirakawa and S. Ikeda, Polym. J. 2, 231 (1971).

    Article  Google Scholar 

  2. H. Akamatsu and H. Inokuchi, J. Chem. Phys. 18, 810 (1950).

    Article  ADS  Google Scholar 

  3. T. Ishiguro and K. Yamaji, Organic Superconductors (Springer-Verlag, Tokyo, 1989).

    Google Scholar 

  4. H. Kino, M. Tateno, M. Boero, J.A. Torres, T. Ohno, K. Terakura and H. Fukuyama, J. Phys. Soc. Jpn. 73, 2089 (2004).

    Article  ADS  Google Scholar 

  5. G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1981).

    Google Scholar 

  6. N.O. Lipari, C.B. Duke and L. Pientronero, J. Chem. Phys. 65, 1165 (1976).

    Article  ADS  Google Scholar 

  7. Y. Asai and Y. Kawaguchi, Phys. Rev. B 46, 1265 (1992); Y. Asai, ibid. 49, 4289 (1994); 68, 014513 (2003); W.E. Pickett, in Solid State Physics, vol. 49, edited by H. Ehrenreich and F. Spaepen (Academic Press, Boston, 1994); M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996); O. Gunnarsson, Alkali-Doped Fullerides (World-Scientific, Singapore, 2004).

    Article  ADS  Google Scholar 

  8. R.G. Endres, D.L. Cox and R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004); M. Taniguchi and T. Kawai, Phys. Rev. E 70, 011913 (2004); ibid. 72, 061909 (2005).

    Article  ADS  Google Scholar 

  9. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  10. J.W. Evenson and M. Karplus, J. Chem. Phys. 96, 5272 (1992).

    Article  ADS  Google Scholar 

  11. V. Mujica, M. Kemp and M.A. Ratner, J. Chem. Phys. 101, 6856 (1994).

    Google Scholar 

  12. Y. Asai and H. Fukuyama, Phys. Rev. B 72, 085431 (2005).

    Article  ADS  Google Scholar 

  13. Y.-C. Chen, M. Zwolak and M. Di Ventra, Nano Letters, 4, 1709 (2004).

    Article  ADS  Google Scholar 

  14. Y. Asai, Phys. Rev. Lett. 93, 246102 (2004); 94, 099901 (2005).

    Article  ADS  Google Scholar 

  15. M. Paulsson, T. Frederiksen and M. Brandbyge, Nano Lett. 6, 258 (2006).

    Article  ADS  Google Scholar 

  16. L. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, Massachusetts, 1962).

    MATH  Google Scholar 

  17. Y. Asai, J. Phys. Chem. B 107, 4647 (2003).

    Article  Google Scholar 

  18. D.K. Ferry and S.M. Goodnick, Transport in Nanostructure (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  19. K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai and H.-Y. Choi, Phys. Rev. Lett. 87, 198102 (2001).

    Article  ADS  Google Scholar 

  20. G.C. Schatz and M.A. Ratner, Quantum Mechanics in Chemistry (Prentice Hall, New Jersey, 1993).

    Google Scholar 

  21. B. Giese, Acc. Chem. Res. 33, 631 (2001).

    Article  Google Scholar 

  22. M. Bixon and J. Jortner, J. Am. Chem. Soc. 123, 12256 (2001).

    Article  Google Scholar 

  23. T. Shimazaki, Y. Asai and K. Yamashita, J. Phys. Chem. B 109, 1295 (2005).

    Article  Google Scholar 

  24. B.X. Xu and N.J. Tao, Science 301, 1221 (2003); B. Xu, P. Zhang, X. Li, and N. Tao, Nano Lett. 4, 1105 (2004).

    Article  ADS  Google Scholar 

  25. M. Fujihira, M. Suzuki, S. Fujii and A. Nishikawa, Phys. Chem. Chem. Phys. 8, 3876 (2006).

    Article  Google Scholar 

  26. T. Tada, M. Kondo and K. Yoshizawa, Chem. Phys. Chem. 4, 1256 (2003).

    Google Scholar 

  27. O.R. Davies and J.E. Inglesfield, Phys. Rev. B 69, 195110 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asai, Y., Shimazaki, T. (2007). Vibronic Mechanisms for Charge Transport and Migration Through DNA and Single Molecules. In: Chakraborty, T. (eds) Charge Migration in DNA. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72494-0_6

Download citation

Publish with us

Policies and ethics