Skip to main content

Atomistic Models of DNA Charge Transfer

  • Chapter
Charge Migration in DNA

Part of the book series: NanoScience and Technology ((NANO))

  • 885 Accesses

Abstract

In Chap. 4, Koslowski and Cramer address the phenomenon of charge transport in DNA using a simple, but chemically specific approach intimately related to the Su-Schrieffer-Heeger model. In that model, the Hamiltonian is carefully parameterized using the ab-initio density-functional calculations. In the presence of an excess positive charge, the emerging potential energy surfaces for hole transfer are found to correspond to the formation of small polarons localized mainly on the individual bases. Thermally activated hopping between these states is analyzed using the Marcus theory of charge transfer. Their results are fully compatible with the conjecture of long-range charge transfer in DNA via two competing mechanisms, and the computations provide the corresponding charge-transfer rates both in the short-range superexchange and in the long-range hopping regime as the output of a single atomistic theory. Furthermore, it reproduces the order of magnitude of the current flow in DNA-gold nanojunctions, the over all shape of the current-voltage curves and their dependence upon the DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Porath, G. Cuniberti, and R. Di Felice, Top. Curr. Chem. 237, 183 (2004); R.G. Endres, D.L. Cox, and R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004).

    Google Scholar 

  2. C.-S. Liu, R. Hernandez, and G.B. Schuster, J. Am. Chem. Soc. 126, 2877 (2003); B. Giese, J. Amaudrut, A.-K. Köhler, M. Spormann, and S. Wessely, Nature 412, 318 (2001).

    Article  Google Scholar 

  3. D.B. Hall, R.E. Holmlin, and J.K. Barton, Nature 382, 731 (1996); T. Takada, K. Kawai, M. Fujitsuka, and T. Majima, Proc. Natl. Acad. Sci. USA 101, 14002 (2004); C. Wan, T. Fiebig, S.O. Kelley, C.R. Treadway, J.K. Barton, and A.H. Zewail, Proc. Natl. Acad. Sci. USA 96, 6014 (1999).

    Article  ADS  Google Scholar 

  4. H.W. Fink and C. Schönenberger, Nature 398, 407 (1999); D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).

    Article  ADS  Google Scholar 

  5. M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M.E. Michel-Beyerle, and J. Jortner, Proc. Natl. Acad. Sci. USA 96, 11713 (1999); B. Giese and M. Spichty, Chem Phys Chem 1, 195 (2000).

    Article  ADS  Google Scholar 

  6. A.A. Voityuk, Chem. Phys. Lett. 427, 177 (2006); K. Senthilkumar, F.C. Grozema, C.F. Guerra, F.M. Bickelhaupt, F.D. Lewis, Y.A. Berlin, M.A. Ratner, and L.D.A. Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005).

    Article  ADS  Google Scholar 

  7. M. Taniguchi and T. Kawai, Physica E 33, 1 (2006).

    Article  ADS  Google Scholar 

  8. W.P. Su, J.R. Schrieffer, and A. Heeger, Phys. Rev. Lett. 41, 1698 (1979).

    Article  ADS  Google Scholar 

  9. M. Rateitzak, and T. Koslowski, Chem. Phys. Lett. 377, 455 (2003).

    Article  ADS  Google Scholar 

  10. R.A. Marcus, J. Chem. Phys 24, 966 (1956); R.A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

    Article  ADS  Google Scholar 

  11. R. Micnas, J. Ranninger, S. Robaskiewicz, Rev. Mod. Phys. 62, 113 (1990); Shun-Quing Shen, Int. J. Mod. Phys. B 12, 709 (1998); F. Mancini, M. Marinaro, H. Matsumoto, Int. J. Mod. Phys. B 10, 1717 (1996); A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  12. N. Utz, Th. Koslowski, Chem. Phys. 282, 389 (2002).

    Article  Google Scholar 

  13. T. Cramer, S. Krapf, and T. Koslowski, J. Phys. Chem. B 108, 11812 (2004).

    Article  Google Scholar 

  14. T. Cramer, T. Steinbrecher, A. Labahn, and T. Koslowski, PCCP 7, 4039 (2005).

    ADS  Google Scholar 

  15. G. Rauhut, T. Clark, J. Am. Chem. Soc. 115, 9127 (1993); M. Gröppel, W. Roth, T. Clark, Advanced Materials 7, 927 (1995).

    Article  Google Scholar 

  16. J.-K. Hwang, and A. Warshel, J. Am. Chem. Soc. 109, 715 (1987).

    Article  Google Scholar 

  17. R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M.L. Klein, R.W. Impey, J. Chem. Phys. 89, 3248 (1988); J. S. Bader, D. Chandler, Chem. Phys. Lett. 157, 501 (1989); J. S. Bader, R. A. Kuharski, D. Chandler, J. Chem. Phys. 93, 230 (1990).

    Article  ADS  Google Scholar 

  18. R.V. Pappu, R. K. Hart, J.W. Ponder, J. Phys. Chem. B 102, 9725 (1998); M. J. Dudek, K. Ramnarayan, J.W. Ponder, J. Comput. Chem. 19, 548 (1998); Y. Kong, and J.W. Ponder, J. Chem. Phys. 107, 481 (1997); J.W. Ponder, F.M. Richards, J. Comput. Chem. 8, 1016 (1987).

    Article  Google Scholar 

  19. F.D. Lewis, X. Liu, S.E. Miller, R.T. Hayes, M.R. Wasielewski, Nature 406, 51 (2000).

    Article  ADS  Google Scholar 

  20. B. Giese, Acc. Chem. Res. 33, 631 (2000).

    Article  Google Scholar 

  21. M.E. Núñez, K.T. Noyes and J.K. Barton, Chem. Biol. 9, 403 (2002).

    Article  Google Scholar 

  22. M.E. Núñez, G.P. Holmquist and J.K. Barton, Biochemistry 40, 12465 (2001).

    Article  Google Scholar 

  23. K. Luger, A.W. Mäder, R.K. Richmond, D.F. Sargent and T.J. Richmond, Nature 389, 251 (1997).

    Article  ADS  Google Scholar 

  24. T. Cramer, S. Krapf, T. Koslowski, PCCP 6, 3160 (2004).

    ADS  Google Scholar 

  25. U. Santhosh, G.B. Schuster, Nucl. Acid Res. 31, 5692 (2003).

    Article  Google Scholar 

  26. D.T. Odom, E.A. Dill, J.K. Barton, Nucl. Acid Res. 29, 2026 (2001); M.E. Nunez, K.T. Noyes, D.A. Gianolio, L.W. McLaughlin, and J.K. Barton, Biochem. 39, 6190 (2000).

    Article  Google Scholar 

  27. T. Cramer, A. Volta, A. Blumen, T. Koslowski, J. Phys. Chem. B 108, 16586 (2004).

    Article  Google Scholar 

  28. D. A. Case et al. AMBER 8, University of California, San Francisco.

    Google Scholar 

  29. H. Cohen, C. Nogues, R. Naaman, and D. Porath, PNAS 102, 11589 (2004); C. Nogues, S.R. Cohen, S. Daube, N. Apter, and R. Naaman, J. Phys. Chem. B 110, 8910 (2006).

    Article  ADS  Google Scholar 

  30. W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Blom, D.M. de Leeuw, and M.A.J. Michels, Phys. Rev. Lett. 94, 206601 (2005); J. Cottaar and P.A. Bobbert, Phys. Rev. B 74, 115204 (2006).

    Article  ADS  Google Scholar 

  31. T. Cramer, S. Krapf, and T. Koslowski, J. Phys. Chem. C, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koslowski, T., Cramer, T. (2007). Atomistic Models of DNA Charge Transfer. In: Chakraborty, T. (eds) Charge Migration in DNA. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72494-0_4

Download citation

Publish with us

Policies and ethics