Skip to main content

Variable-Range Charge Hopping in DNA

  • Chapter
Charge Migration in DNA

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In Chap. 3, Berlin and Ratner describe charge migration in DNA within a theoretical framework of a variable-range hopping model which has been successfully used to analyze steady-state measurements of the charge transfer efficiency for this molecule. According to the model proposed, the ability of DNA to serve as the medium for very long-range (up to 200 – 300°A) charge transfer is caused by the energetics of the base pairs stacked in the interior of the double helix. The energy landscape for charge migration along the stack of the nucleobases is shown to exhibit features typical for complex disordered systems. They also show that a charge moving in this landscape can be transferred over large distances via a series of short quantum hops with typical length of 13 — 18°A alternating with relatively long thermally activated jumps between “resting” sites of the stack. The physical nature of the hopping charges and the issues of dynamic and static disorder are also discussed in the context of the transport properties of DNA systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Watson and F.H.C. Crick, Nature 171, 737 (1953).

    ADS  Google Scholar 

  2. M.A. Ratner and J. Jortner, Molecular electronics (Blackwell, Oxford, 1997).

    Google Scholar 

  3. V. Bhalla, R.P. Bajpai and L.M. Bharadwaj, EMBO Rep. 4, 442 (2003).

    Google Scholar 

  4. H. Tabata, L.T. Cai, J.H. Gu, S. Tanaka, Y. Otsuka, Y. Sacho, M. Taniguchi and T. Kawai, Synth. Met. 133, 469 (2003).

    Google Scholar 

  5. M. Di Ventra and M. Zwolak, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa American Scientific Publishers, Stevenson Ranch, California, 2004; L. Adleman, Science 266, 1021 (1994).

    Google Scholar 

  6. E. Winfree, in Proceedings of a DIMACS Workshop, edited by R.J. Lipton and E.B. Baum American Mathematical Society, Providence, 1996.

    Google Scholar 

  7. E. Winfree, J. Biol. Mol. Struct. Dynamics Conversat. 2, 263 (2000).

    Google Scholar 

  8. C. Mao, T. LaBean, J.H. Reif and N.C. Seeman, Nature 407, 493 (2000).

    ADS  Google Scholar 

  9. N.C. Seeman, Nature 421, 427 (2003).

    ADS  MathSciNet  Google Scholar 

  10. G. Hartwich, D.J. Caruana, T. de Lumley-Woodyear, Y.B. Wu, C.N. Campbell and A. Heller, J.Am. Chem. Soc. 21, 10803 (1999).

    Google Scholar 

  11. F. Lisdat, B. Ge, and F.W. Scheller, Electrochem. Commun. 1, 65 (1999).

    Google Scholar 

  12. S.J. Park, A.A. Lazarides, C.A. Mirkin, P.W. Brazis, C.R. Kannewurf and R.L. Letsinger, Angew. Chem. Int. Ed. 39, 3845 (2000).

    Google Scholar 

  13. E.M. Boon, D.M. Ceres, T.G. Drummond, M.G. Hill and J.K. Barton, Nature Biotechnol. 18, 1096 (2000).

    Google Scholar 

  14. C.M. Niemeyer, Angew. Chem. Int. Ed. 40, 4128 (2001).

    Google Scholar 

  15. S.-J. Park, T.A. Taton and C.A. Mirkin, Science 295, 1503 (2002).

    ADS  Google Scholar 

  16. A. Marshall and J. Hodgson, Nature Biotechnol. 16, 27 (1998).

    Google Scholar 

  17. S.O. Kelley, N.M. Jackson, M.G. Hill and J.K. Barton, Angew. Chem. Int. Ed. 38, 941 (1999).

    Google Scholar 

  18. F. Lisdat, B. Ge, B. Krause, A. Ehrlich, H. Bienert and F.W. Scheller, Electroanal. 13, 1225 (2001).

    Google Scholar 

  19. J.J. Gooding, Electroanal. 14, 1149 (2002).

    Google Scholar 

  20. S. Kimamoto, H. Nakano, Y. Matsuo, Y. Sugie and K. Yamana, Electrochemistry 70, 789 (2002).

    Google Scholar 

  21. E.M. Boon, J.K. Barton, P.I. Pradeepkumar, J. Isaksson, C. Petit and J. Chattopadhyaya, Angew. Chem. Int. Ed. 41, 3402 (2002).

    Google Scholar 

  22. A. Erdem and M. Ozsoz, Electroanal. 14, 963 (2002).

    Google Scholar 

  23. R.P. Fahlman and D. Sen, J. Am. Chem. Soc. 124, 4610 (2002).

    Google Scholar 

  24. P. O’Neill and E.M. Frieden, Adv. Radiat. Biol. 17, 53 (1993).

    Google Scholar 

  25. B. Armitage, Chem. Rev. 98, 1171 (1998).

    MathSciNet  Google Scholar 

  26. C.J. Burrows and J.G. Muller, Chem. Rev. 98, 1109 (1998).

    Google Scholar 

  27. D. Wang, D.A. Kreutzer and J.M. Essigmann, Mutat. Res. 400, 99 (1998).

    Google Scholar 

  28. S. Kawanishi, Y. Hiraku and S. Oikawa, Mutat. Res. 488, 65 (2001).

    Google Scholar 

  29. D.D. Eley and D.I. Spivey, Trans. Faraday Soc. 58, 411 (1962).

    Google Scholar 

  30. U. Diederichsen, Angew. Chem. Int. Ed. 36, 2317 (1997).

    Google Scholar 

  31. M.W. Grinstaff, Angew. Chem. Int. Ed. 38, 3629 (1999).

    Google Scholar 

  32. C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossman, N.J. Turro and J.K. Barton, Science 262, 1025 (1993).

    ADS  Google Scholar 

  33. M.R. Arkin, E.D.A. Stemp, R.E. Holmin, J.K. Barton, A. Horman, E.J.C. Olson and P.F. Barbara, Science 273, 475 (1996).

    ADS  Google Scholar 

  34. S.O. Kelley, R.E. Holmin, E.D.A. Stemp and J.K. Barton, J. Am. Chem. Soc. 119, 9861 (1997).

    Google Scholar 

  35. K. Fukui and K. Tanaka, Angew. Chem. Int. Ed. Engl. 37, 158 (1998).

    Google Scholar 

  36. C. Wan, T. Fiebig, S.O. Kelley, C.R. Treadway, J.K. Barton and A.H. Zewail, Proc. Natl. Acad. Sci. USA 96, 6014 (1999).

    ADS  Google Scholar 

  37. T.J. Meade and J.F. Kayyem, Angew. Chem. Int. Ed. 34, 352 (1995).

    Google Scholar 

  38. S.M. Gasper and G.B. Schuster, J. Am. Chem. Soc. 199, 12762 (1997).

    Google Scholar 

  39. F.D. Lewis, T. Wu, Y. Zhang, R.L. Letsinger, S.R. Greenfield and M.R. Wasielewski, Science 277, 673 (1997).

    Google Scholar 

  40. F.D. Lewis, X. Liu, Y. Wu, S.E. Miller, M.R. Wasielewski, R.L. Letsinger, R. Sanishcili, A. Joachimiak, V. Tereshko and M. Egli, J. Am. Chem. Soc. 121, 9905 (1999).

    Google Scholar 

  41. F.D. Lewis, X. Liu, S.E. Miller and M.R. Wasielewski, J. Am. Chem. Soc. 121, 9746 (1999).

    Google Scholar 

  42. P.T. Henderson, D. Jones, G. Hampikian, Y. Kan and G.B. Schuster, Proc. Natl. Acad. Sci. USA 96, 8353 (1999).

    ADS  Google Scholar 

  43. A.M. Brun and A. Harriman, J. Am. Chem. Soc. 116, 10383 (1994).

    Google Scholar 

  44. S.O. Kelley and J.K. Barton, Chem. Biol. 5, 413 (1998).

    Google Scholar 

  45. S.O. Kelley and J.K. Barton, Science 283, 375 (1999).

    ADS  Google Scholar 

  46. D.B. Hall, R.E. Holmin and J.K. Barton, Nature 382, 731 (1996).

    ADS  Google Scholar 

  47. E. Meggers, M.E. Michel-Beyerle and B. Giese, J. Am. Chem. Soc. 120, 12950 (1998).

    Google Scholar 

  48. B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers and M.E. Michel-Beyerle, Angew. Chem. Int. Ed. 38, 996 (1999).

    Google Scholar 

  49. K. Nakatani, C. Dohno and I. Saito, J. Am. Chem. Soc. 12, 10854 (1999).

    Google Scholar 

  50. D. Ly, L. Sanii and G.B. Schuster, J. Am. Chem. Soc. 121, 9400 (1999).

    Google Scholar 

  51. H.-A. Wagenknecht, Angew. Chem. Int. Ed. 42, 2454 (2003).

    Google Scholar 

  52. Y. Razskazovskiy, S.G. Swarts, J.M. Falcone, C. Taylor and M.D. Sevilla, J. Phys. Chem. B 101, 1460 (1997).

    Google Scholar 

  53. R.F. Anderson and G.A. Wright, Phys. Chem. Chem. Phys. 1, 4827 (1999).

    Google Scholar 

  54. M.G. Debije, M.T. Milano and W.A. Bernhard, Angew. Chem. Int. Ed. 38, 2752 (1999).

    Google Scholar 

  55. A. Messer, K. Carpenter, K. Forzley, J. Buchanan, S. Yang, Y. Razskazovski, Z. Cai and M.D. Sevilla, J. Phys. Chem. B 104, 1128 (2000).

    Google Scholar 

  56. Z. Cai and M.D. Sevilla, J. Phys. Chem. B 104, 6942 (2000).

    Google Scholar 

  57. Z. Cai, Z. Gy and M.D. Sevilla, J. Phys. Chem. B 104, 10406 (2000).

    Google Scholar 

  58. X. Li, Z. Cai and M.D. Sevilla, J. Phys. Chem. B 105, 10115 (2001).

    Google Scholar 

  59. Z. Cai, X. Li and M.D. Sevilla, J. Phys. Chem B 106, 2755 (2002).

    Google Scholar 

  60. J.M. Warman, M.P. De Haas and A. Rupprecht, Chem. Phys. Lett. 249, 319 (1996).

    ADS  Google Scholar 

  61. D.N. Beratan, S. Priyadarshy and S.M. Risser, Chem. Biol. 4, 3 (1997).

    Google Scholar 

  62. E.K. Wilson, Chem. Eng. News 75, 33 (1997).

    Google Scholar 

  63. S. Priyadarshy, S.M. Risser and D.N. Beratan, J. Biol. Inorg. Chem. 3, 196 (1998).

    Google Scholar 

  64. N.J. Turro and J.K. Barton, J. Biol. Inorg. Chem. 3, 201 (1998).

    Google Scholar 

  65. E.S. Krider and T.J. Meade, J. Biol. Inorg. Chem. 3, 222 (1998).

    Google Scholar 

  66. T.L. Netzel, J. Biol. Inorg. Chem. 3, 210 (1998).

    Google Scholar 

  67. E.K. Wilson, Chem. Eng. News 76, 51 (1998).

    Google Scholar 

  68. Y.A. Berlin, A.L. Burin, and M.A. Ratner, Superlatt. and Microstruct. 28, 241 (2000).

    ADS  Google Scholar 

  69. C. Wu, Science News 156, 104 (1999).

    Google Scholar 

  70. J. Jortner, M. Bixon, T. Langenbacher and M.E. Michel-Beyerle, Proc. Natl. Acad. Sci. USA 95, 12759 (1998).

    ADS  Google Scholar 

  71. M.A. Ratner, Nature 397, 480 (1999).

    ADS  Google Scholar 

  72. M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M.E. Michel-Beyerle and J. Jortner, Proc. Natl. Acad. Sci USA 96, 11713 (1999).

    ADS  Google Scholar 

  73. Y.A. Berlin, A.L. Burin and M.A. Ratner, J. Phys. Chem. A 104, 443 (2000).

    Google Scholar 

  74. Y.A. Berlin, A.L. Burin and M.A. Ratner, J. Am. Chem. Soc. 123, 260 (2001).

    Google Scholar 

  75. Y.A. Berlin, A.L. Burin and M.A. Ratner Chem. Phys. 275, 61 (2002).

    ADS  Google Scholar 

  76. M. Bixon and J. Jortner, Chem. Phys. 281, 393 (2002).

    ADS  Google Scholar 

  77. M. Enescu and L. Lindqvist, J. Phys. Chem. 99, 8405 (1995).

    Google Scholar 

  78. C.A.M. Siedel, A. Schultz and M.H.M. Sauer, J. Phys. Chem. 100, 5541 (1996).

    Google Scholar 

  79. C. Lifschitz, E. Bergmann and B. Pullman, Tetrahedron Lett. 46, 4583 (1967).

    Google Scholar 

  80. N.S. Hush and A.S. Cheung, Chem. Phys. Lett. 34 11 (1975).

    ADS  Google Scholar 

  81. V.M. Orlov, A.N. Smirnov and Y.M. Varshavshy, Tetrahedron Lett. 48, 4377 (1976).

    Google Scholar 

  82. A.-O. Colson, B. Besler, M.D. Close and M.D. Sevilla, J. Phys. Chem. 96, 661 (1992).

    Google Scholar 

  83. A.-O. Colson, B. Besler and M.D. Sevilla, J. Phys. Chem. 96, 9787 (1992).

    Google Scholar 

  84. M.D. Sevilla, B. Besler and A.-O. Colson, J. Phys. Chem. 99, 1060 (1995).

    Google Scholar 

  85. H. Sugiyama and I. Saito, J. Am. Chem. Soc. 118, 7063 (1996).

    Google Scholar 

  86. M. Hutter and T.J. Clark, J. Am. Chem. Soc. 118, 7574 (1996).

    Google Scholar 

  87. N.S. Kim and P.R. LeBreton, J. Am. Chem. Soc. 118, 3694 (1996).

    Google Scholar 

  88. F. Prat, K.N. Houk and C.S. Foote, J. Am. Chem. Soc. 120, 845 (1998).

    Google Scholar 

  89. I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi and H. Sugiyama, J. Am. Chem. Soc. 120, 12686 (1998).

    Google Scholar 

  90. H. Fernando, G.A. Papadantonakis, N.S. Kim and P.R. LeBreton, Proc. Natl. Acad. Sci. USA 95, 5550 (1998).

    ADS  Google Scholar 

  91. A.A. Voityuk, J. Jortner, M. Bixon and N. Rösch, Chem. Phys. Lett. 324, 430 (2000).

    ADS  Google Scholar 

  92. N. Russo, M. Toscano and A. Grand, J. Comput. Chem. 21, 1243 (2000).

    Google Scholar 

  93. K. Senthilkumar, F.C. Grozema, C.F. Guerra, F.M. Bickelhaupt and L.D.A. Siebbeles, J. Am. Chem. Soc. 125, 13658 (2003).

    Google Scholar 

  94. S. Steenken and S.V. Jovanovic, J. Am. Chem. Soc. 119, 617 (1997).

    Google Scholar 

  95. S. Steenken, J.P. Telo, H.M. Novais and L.P. Candeias, J. Am. Chem. Soc. 114, 4701 (1992).

    Google Scholar 

  96. X. Li, Z. Cai and M.D. Sevilla, J. Phys. Chem. A 106, 1596 (2002).

    Google Scholar 

  97. A.A. Voityuk, M.E. Michel-Beyerle and N. Rösch, Chem. Phys. Lett. 342, 231 (2001).

    ADS  Google Scholar 

  98. Y.A. Berlin, I.V. Kurnikov, D. Beratan, M.A. Ratner and A.L. Burin, Top. Curr. Chem. 237, 1 (2004).

    Google Scholar 

  99. Y.A. Berlin and M.A. Ratner, Radiat. Phys. Chem. 74, 124 (2005).

    ADS  Google Scholar 

  100. F.D. Lewis, R.L. Letsinger and M.R. Wasielewski, Acc. Chem. Res. 34, 159 (2001).

    Google Scholar 

  101. S. Hess, M. Götz, W.B. Davis and M.E. Michel-Beyerle, J. Am. Chem. Soc. 123, 10046 (2001).

    Google Scholar 

  102. F.D. Lewis, X. Liu, S.E. Miller, R.T. Hayes and M.R. Wasielewski, J. Am. Chem. Soc. 124, 11280 (2002).

    Google Scholar 

  103. N. Amann, E. Pandurski, T. Fiebig and H.-A. Wegenkhecht, Chem. Eur. J. 8, 4877 (2002).

    Google Scholar 

  104. C.-S. Liu, R. Hernandez and G.B. Schuster, J. Am. Chem. Soc. 126, 2877 (2004).

    Google Scholar 

  105. T. Ito and S.E. Rakita, J. Am. Chem. Soc. 125, 11480 (2003).

    Google Scholar 

  106. C. Behrens, M. Ober and T. Carell, Eur. J. Org. Chem. 19, 3281 (2002).

    Google Scholar 

  107. C. Behrens, L.T. Burgdorf, A. Schwögler and T. Carell, Angew. Chem. Int. Ed. 41, 1763 (2002).

    Google Scholar 

  108. C. Behrens and T. Carell, Chem. Commun. 14, 1632 (2003).

    Google Scholar 

  109. S. Breeger, U. Hennecke and T. Carell, J. Am. Chem. Soc. 126, 1302 (2004).

    Google Scholar 

  110. B. Giese, Annu. Rev. Biochem. 71, 51 (2002).

    Google Scholar 

  111. B. Giese, J. Amaudrut, A.-K. Köhler, M. Spermann and S. Wessely, Nature 412, 318 (2001).

    ADS  Google Scholar 

  112. M.E. Núñez, D.B. Hall and J.K. Barton, Chem. Biol. 6, 85 (1999).

    Google Scholar 

  113. K. Senthilkumar, F.C. Grozema, C.F. Guerra, F.M. Bickelhaupt, F.D. Lewis, Y.A. Berlin, M.A. Ratner and L.D.A. Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005).

    Google Scholar 

  114. M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999).

    Google Scholar 

  115. A.A. Voityuk, J. Chem. Phys. 122, 204904 (2005).

    ADS  Google Scholar 

  116. K. Siriwong, A.A. Voityuk, M.D. Newton and N. Rösch, J. Phys. Chem. B 107, 2595 (2003).

    Google Scholar 

  117. D.N. LeBard, M. Lilichenko, D.V. Matyushov, Y.A. Berlin and M.A. Ratner, J.Chem. Phys. B 107, 14509 (2003).

    Google Scholar 

  118. E.M. Conwell, Top. Curr. Chem. 237, 73 (2004).

    Google Scholar 

  119. B. Giese and S. Wessely, Angew. Chem. Int. Ed. 39, 3490 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berlin, Y.A., Ratner, M.A. (2007). Variable-Range Charge Hopping in DNA. In: Chakraborty, T. (eds) Charge Migration in DNA. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72494-0_3

Download citation

Publish with us

Policies and ethics