Skip to main content

Tight-Binding Modeling of Charge Migration in DNA Devices

  • Chapter
Book cover Charge Migration in DNA

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In Chap. 1, Cuniberti et al. have presented a review of theoretical models that are used for simple, tight-binding-based analysis of charge transport in DNA. These simplified models for the DNA strand can offer insights albeit qualitatively, into the intrinsic transport characteristics, statistical properties, sequence dependence and also the effects of solution and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Modern Methods for Theoretical Physical Chemistry of Biopolymers, edited by E.B. Starikov, J.P. Lewis, and S. Tanaka (Elsevier, Amsterdam, 2006).

    Google Scholar 

  2. D.D. Eley and D.I. Spivey, Trans. Faraday Soc. 58, 411 (1962).

    Article  Google Scholar 

  3. S.O. Kelley and J.K. Barton, Science 283, 375 (1999).

    Article  ADS  Google Scholar 

  4. K. Keren, R.S. Berman, E. Buchstab, U. Sivan, and E. Braun, Science 302, 1380 (2003).

    Article  ADS  Google Scholar 

  5. M. Mertig, R. Kirsch, W. Pompe, and H. Engelhardt, Eur. Phys. J. D 9, 45 (1999).

    Article  ADS  Google Scholar 

  6. J.H. Reif, T.H. LaBean, and N.C. Seeman, in DNA’ 00: Revised Papers from the 6th International Workshop on DNA-Based Computers (Springer-Verlag, London, UK, 2001), pp. 173–198.

    Google Scholar 

  7. C.J. Murphy, M.A. Arkin, Y. Jenkins, N.D. Ghatlia, S. Bossman, N.J. Turro, and J.K. Barton, Science 262, 1025 (1993).

    Article  ADS  Google Scholar 

  8. S. Priyadarshy, S.M. Risser, and D.N. Beratan, J. Phys. Chem. 100, 17678 (1996).

    Article  Google Scholar 

  9. E. Meggers, M.E. Michel-Beyerle, and B. Giese, J. Am. Chem. Soc. 120, 12950 (1998).

    Article  Google Scholar 

  10. C.R. Treadway, M.G. Hill, and J.K. Barton, Chemical Physics 281, 409 (2002).

    Article  ADS  Google Scholar 

  11. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature 391, 775 (1998).

    Article  ADS  Google Scholar 

  12. A.J. Storm, J. van Noort, S. de Vries, and C. Dekker, Appl. Phys. Lett. 79, 3881 (2001).

    Article  ADS  Google Scholar 

  13. D. Porath, A. Bezryadin, S. De Vries, and C. Dekker, Nature 403, 635 (2000).

    Article  ADS  Google Scholar 

  14. H. Cohen, C. Nogues, R. Naaman, and D. Porath, Proc. Nat. Acad. Sci. 102, 11589 (2005).

    Article  ADS  Google Scholar 

  15. H.-W. Fink and C. Schönenberger, Nature 398, 407 (1999).

    Article  ADS  Google Scholar 

  16. K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, J. Kim, J.J. Kim, H.-Y. Lee, T. Kawai, and H.Y. Choi, Phys. Rev. Lett. 87, 198102 (2001).

    Article  ADS  Google Scholar 

  17. B. Xu, P. Zhang, X. Li, and N. Tao, Nano Lett. 4, 1105 (2004).

    Article  ADS  Google Scholar 

  18. A.Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V.T. Volkov, D. V. Klinov, and H. Bouchiat, Science 291, 280 (2001).

    Article  ADS  Google Scholar 

  19. E. Artacho, M. Machado, D. Sanchez-Portal, P. Ordejon, and J.M. Soler, Mol. Phys. 101, 1587 (2003).

    Article  ADS  Google Scholar 

  20. A. Calzolari, R. Di Felice, E. Molinari, and A. Garbesi, Appl. Phys. Lett. 80, 3331 (2002).

    Article  ADS  Google Scholar 

  21. R. Di Felice, A. Calzolari, and H. Zhang, Nanotechnology 15, 1256 (2004).

    Article  ADS  Google Scholar 

  22. F.L. Gervasio, P. Carolini, and M. Parrinello, Phys. Rev. Lett. 89, 108102 (2002).

    Article  ADS  Google Scholar 

  23. R.N. Barnett, C.L. Cleveland, A. Joy, U. Landman, and G.B. Schuster, Science 294, 567 (2001).

    Article  ADS  Google Scholar 

  24. A. Hübsch, R.G. Endres, D.L. Cox, and R.R.P. Singh, Phys. Rev. Lett. 94, 178102 (2005).

    Article  ADS  Google Scholar 

  25. E.B. Starikov, Phil. Mag. Lett. 83, 699 (2003).

    Article  ADS  Google Scholar 

  26. E.B. Starikov, Phil. Mag. 85, 3435 (2005).

    Article  ADS  Google Scholar 

  27. C. Adessi, S. Walch, and M.P. Anantram, Phys. Rev. B 67, 081405(R) (2003).

    Article  ADS  Google Scholar 

  28. H. Mehrez and M.P. Anantram, Phys. Rev. B 71, 115405 (2005).

    Article  ADS  Google Scholar 

  29. G. Cuniberti, L. Craco, D. Porath, and C. Dekker, Phys. Rev. B 65, 241314 (2002).

    Article  ADS  Google Scholar 

  30. J. Jortner, M. Bixon, T. Langenbacher, and M.E. Michel-Beyerle, Proc. Nat. Acad. Sci. 95, 12759 (1998).

    Article  ADS  Google Scholar 

  31. J. Jortner and M. Bixon, Chemical Physics 281, 393 (2002).

    Article  ADS  Google Scholar 

  32. S. Roche, D. Bicout, E. Maciá, and E. Kats, Phys. Rev. Lett. 91, 228101 (2003).

    Article  ADS  Google Scholar 

  33. S. Roche, Phys. Rev. Lett. 91, 108101 (2003).

    Article  ADS  Google Scholar 

  34. M. Unge and S. Stafstrom, Nano Lett. 3, 1417 (2003).

    Article  ADS  Google Scholar 

  35. F. Palmero, J.F.R. Archilla, D. Hennig, and F.R. Romero, New J. Phys. 6, 13 (2004).

    Article  ADS  Google Scholar 

  36. V.M. Apalkov and T. Chakraborty, Phys. Rev. B 71, 033102 (2005).

    Article  ADS  Google Scholar 

  37. V.M. Apalkov and T. Chakraborty, Phys. Rev. B 72, 161102 (2005).

    Article  ADS  Google Scholar 

  38. R. Gutierrez, S. Mandal, and G. Cuniberti, Phys. Rev. B 71, 235116 (2005).

    Article  ADS  Google Scholar 

  39. R. Gutierrez, S. Mandal, and G. Cuniberti, Nano Lett. 5, 1093 (2005).

    Article  ADS  Google Scholar 

  40. D.K. Klotsa, R.A. Römer, and M.S. Turner, Biophys. J. 89, 2187 (2005).

    Article  Google Scholar 

  41. H. Yamada, Phys. Lett. A 332, 65 (2004).

    Article  ADS  MATH  Google Scholar 

  42. M. R. D’Orsogna and R. Bruinsma, Phys. Rev. Lett. 90, 078301 (2003).

    Article  ADS  Google Scholar 

  43. E. Maciá and S. Roche, Nanotechnology 17, 3002 (2006).

    Article  ADS  Google Scholar 

  44. E. Maciá, Phys. Rev. B 74, 245105 (2006).

    Article  ADS  Google Scholar 

  45. O.R. Davies and J.E. Inglesfield, Phys. Rev. B 69, 195110 (2004).

    Article  ADS  Google Scholar 

  46. Y.J. Yan and H. Zhang, J. Theor. Comput. Chem. 1, 225 (2002).

    Google Scholar 

  47. K. Iguchi, Int. J. Mod. Phys. B 18, 1845 (2004).

    Article  ADS  Google Scholar 

  48. A._A. Voityuk, J. Jortner, M. Boxin, and N. Rösch, J. Chem. Phys. 114, 5614 (2001).

    Article  ADS  Google Scholar 

  49. H. Sugiyama and I. Saito, J. Am. Chem. Soc. 118, 7063 (1996).

    Article  Google Scholar 

  50. H. Zhang, X.-Q. Li, P. Han, X. Y. Yu, and Y. Yan, J. Chem. Phys. 117, 4578 (2002).

    Article  ADS  Google Scholar 

  51. X. Yang, X.-B. Wang, E. R. Vorpagel, and L.-S. Wang, Proc. Nat. Acad. Sci. 101, 17588 (2004).

    Article  ADS  Google Scholar 

  52. E. Cauet, D. Dehareng, and J. Lievin, J. Phys. Chem. A 110, 9200 (2006).

    Article  Google Scholar 

  53. Computational Statistical Physics: From Billiards to Monte Carlo, edited by K. H. Hoffmann and M. Schreiber (Springer-Verlag, Berlin, 2002).

    MATH  Google Scholar 

  54. B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).

    Article  ADS  Google Scholar 

  55. R. A. Römer and M. Schreiber, in The Anderson Transition and its Ramifications — Localization, Quantum Interference, and Interactions, Vol. 630 of Lecture Notes in Physics, edited by T. Brandes and S. Kettemann (Springer, Berlin, 2003).

    Google Scholar 

  56. P.J. Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero, P. Hererro, P. Baro, A.M. an Ordejon, J.M. Soler, and E. Artacho, Phys. Rev. Lett. 85, 4992 (2000).

    Article  ADS  Google Scholar 

  57. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson, Molecular Biology of the Cell (Garland, New York, 1994).

    Google Scholar 

  58. A. MacKinnon, J. Phys.: Condens. Matter 13, L1031 (1980).

    Google Scholar 

  59. A. MacKinnon, Z. Phys. B 59, 385 (1985).

    Article  ADS  Google Scholar 

  60. R.A. Römer, C. Villagonzalo, and A. MacKinnon, J. Phys. Soc. Japan 72, 167 (2003), suppl. A.

    Google Scholar 

  61. A. Croy, R.A. Römer, and M. Schreiber, in Parallel Algorithms and Cluster Computing-Implementations, Algorithms, and Applications, Lecture Notes in Computational Science and Engineering, edited by K. Hoffmann and A. Meyer (Springer, Berlin, 2006).

    Google Scholar 

  62. J. D’Amato and H. Pastawski, Phys. Rev. B 41, 7411 (1990).

    Article  ADS  Google Scholar 

  63. J.-L. Pichard and G. Sarma, J. Phys. C 14, L127 (1981).

    Article  ADS  Google Scholar 

  64. J.-L. Pichard and G. Sarma, J. Phys. C 14, L617 (1981).

    Article  ADS  Google Scholar 

  65. A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983).

    Article  ADS  Google Scholar 

  66. A. MacKinnon, J. Phys.: Condens. Matter 6, 2511 (1994).

    Article  ADS  Google Scholar 

  67. K. Frahm, A. Müller-Groeling, J.L. Pichard, and D. Weinmann, Europhys. Lett. 31, 169 (1995).

    Article  ADS  Google Scholar 

  68. R.A. Römer and M. Schreiber, Phys. Rev. Lett. 78, 4890 (1997).

    Article  ADS  Google Scholar 

  69. M.L. Ndawana, R.A. Römer, and M. Schreiber, Europhys. Lett. 68, 678 (2004).

    Article  ADS  Google Scholar 

  70. M. Büttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983).

    Article  ADS  Google Scholar 

  71. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  ADS  Google Scholar 

  72. P.F. Bagwell and T.P. Orlando, Phys. Rev. B 40, 1456 (1989).

    Article  ADS  Google Scholar 

  73. E.G. Emberly and G. Kirczenow, Phys. Rev. B 58, 10911 (1998).

    Article  ADS  Google Scholar 

  74. E.G. Emberly and G. Kirczenow, J. Phys.: Condens. Matter 11, 6911 (1999).

    Article  ADS  Google Scholar 

  75. T. Kostyrko, J. Phys.: Condens. Matter 14, 4393 (2002).

    Article  ADS  Google Scholar 

  76. E. Maciá, F. Triozon, and S. Roche, Phys. Rev. B 71, 113106 (2005).

    Article  ADS  Google Scholar 

  77. Y. Zhu, C.C. Kaun, and H. Guo, Phys. Rev. B 69, 245112 (2004).

    Article  ADS  Google Scholar 

  78. B. Hartzell, B. Melord, D. Asare, H. Chen, J. J. Heremans, and V. Sughomonian, Appl. Phys. Lett. 82, 4800 (2003).

    Article  ADS  Google Scholar 

  79. Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, Phys. Rev. Lett. 89, 198102 (2002).

    Article  ADS  Google Scholar 

  80. P.W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  81. The Anderson Transition and its Ramifications — Localization, Quantum Interference, and Interactions, Vol. 630 of Lecture Notes in Physics, edited by T. Brandes and S. Kettemann (Springer, Berlin, 2003).

    Google Scholar 

  82. X.-Q. Li and Y. Yan, Appl. Phys. Lett. 79, 2190 (2001).

    Article  ADS  Google Scholar 

  83. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  84. Z. Yu and X. Song, Phys. Rev. Lett. 86, 6018 (2001).

    Article  ADS  Google Scholar 

  85. W. Zhang and S.E. Ulloa, Phys. Rev. B 69, 153203 (2004).

    Article  ADS  Google Scholar 

  86. Y. Asai, J. Phys. Chem. B 107, 4647 (2003).

    Article  Google Scholar 

  87. E.L. Alburquerque, M.S. Vasconcelos, M.L. Lyra, and F.A.B.F. de Moura, Phys. Rev. E 71, 21910 (2005).

    Article  ADS  Google Scholar 

  88. C.T. Shih, Phys. Stat. Sol. (b) 243, 378 (2006).

    Article  ADS  Google Scholar 

  89. C.T. Shih, Phys. Rev. E 74, 010903 (2006).

    Article  ADS  Google Scholar 

  90. E.M. Conwell and S.V. Rakhmanova, Proc. Nat. Acad. Sci. 97, 4556 (2000).

    Article  ADS  Google Scholar 

  91. R. Bruinsma, G. Grüner, M.R. D’Orsogna, and J. Rudnick, Phys. Rev. Lett. 85, 4393 (2000).

    Article  ADS  Google Scholar 

  92. W. Zhang, A.O. Govorov, and S.E. Ulloa, Phys. Rev. B 66, 060303 (2002).

    Article  ADS  Google Scholar 

  93. S. Komineas, G. Kalosakas, and A.R. Bishop, Phys. Rev. E 65, 061905 (2002).

    Article  ADS  Google Scholar 

  94. H. Yamada, E.B. Starikov, D. Hennig, and J. F. R. Archilla, Eur. Phys. J. E 17, 149 (2004).

    Article  Google Scholar 

  95. F.C. Grozema, Y.A. Berlin, and L.D.A. Siebbeles, J. Am. Chem. Soc. 122, 10903 (2000).

    Article  Google Scholar 

  96. R.G. Endres, D.L. Cox, R.R.P. Singh, and S.K. Pati, Phys. Rev. Lett. 88, 166601 (2002).

    Article  ADS  Google Scholar 

  97. E.I. Kats and V. V. Lebedev, JETP Lett. 75, 37 (2002).

    Article  ADS  Google Scholar 

  98. V.D. Lakhno, J. Biol. Phys. 26, 133 (2000).

    Article  Google Scholar 

  99. N. Rösch and A.A. Voityuk, Top. Curr. Chem. 237, 37 (2004). See Ref. [122].

    Google Scholar 

  100. H. Wang, R. Marsh, J.P. Lewis, and R.A. Römer, in Modern Methods for Theoretical Physical Chemistry of Biopolymers, edited by E.B. Starikov, J.P. Lewis, and S. Tanaka (Elsevier, Amsterdam, 2006).

    Google Scholar 

  101. R.A. Römer and H. Schulz-Baldes, Europhys. Lett. 68, 247 (2004).

    Article  ADS  Google Scholar 

  102. K. Iguchi, Int. J. Mod. Phys. B 11, 2405 (1997).

    Article  ADS  Google Scholar 

  103. J. Yi, Phys. Rev. B 68, 193103 (2004).

    Article  ADS  Google Scholar 

  104. R.A. Caetano and P.A. Schulz, Phys. Rev. Lett. 95, 126601 (2005).

    Article  ADS  Google Scholar 

  105. A. Sedrakyan and F. Domnínguez-Adame, Phys. Rev. Lett. 96, 059703 (2006).

    Article  ADS  Google Scholar 

  106. R.A. Caetano and P.A. Schulz, Phys. Rev. Lett. 96, 059704 (2006).

    Article  ADS  Google Scholar 

  107. E. Díaz, A. Sedrakyan, D. Sedrakyan, and F. Domínguez-Adame, Phys. Rev. B 75, 014201 (2007).

    Article  ADS  Google Scholar 

  108. K. Iguchi, J. Phys. Soc. Jpn. 70, 593 (2001).

    Article  ADS  Google Scholar 

  109. K. Forinash, A.R. Bishop, and P.S. Lomdahl, Phys. Rev. B 43, 10743 (1991).

    Article  ADS  Google Scholar 

  110. N.R. Walet and W.J. Zakrzewski, Nonlinearity 18, 2615 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  111. S.S. Wesolowski, M.L. Leininger, P.N. Pentchev, and H.F. Schaefer III, J. Am. Chem. Soc. 123, 4023 (2001).

    Article  Google Scholar 

  112. J. Zhong, in Proceedings of the 2003 Nanotechnology Conference, Computational Publications, edited by M. Laudon and B. Romamowicz (Nano Science and Technology Institute, Cambridge, 2003), Vol. 2, pp. 105–108, (Molecular and Nano Electronics).

    Google Scholar 

  113. D.K. Klotsa, R.A. Römer, and M.S. Turner, In Proceedings 27th International Conference on the Physics of Semiconductors (Q5 129), Flagstaff, Arizona 328 (2004).

    Google Scholar 

  114. R.G. Endres, D.L. Cox, and R.P. Singh, Rev. Mod. Phys. 76, 195 (2004).

    Article  ADS  Google Scholar 

  115. A. Rodriguez, R.A. Römer, and M.S. Turner, phys. stat. sol. (b) 243, 373 (2005).

    Article  ADS  Google Scholar 

  116. J.F. Feng and S.J. Xiong, Phys. Rev. E 66, 021908 (2002).

    Article  ADS  Google Scholar 

  117. J. Cuevas, E.B. Starikov, J. F. R. Archilla, and D. Henning, Mod. Phys. Lett. B 18, 1319 (2004).

    Article  ADS  Google Scholar 

  118. R. Bulla, R. Gutierrez, and G. Cuniberti, Modern methods for theoretical physical chemistry of biopolymers, edited by E. Starikow, J. Lewis and S. Tanaka (Elsevier, Amsterdam, 2006).

    Google Scholar 

  119. D. Porath, G. Cuniberti, and R. Di Felice, in Long-Range Charge Transfer in DNA I and II, Vol. 237 of Topics in Current Chemistry, edited by G.B. Schuster (Springer, Berlin, 2004), pp. 183. See Ref. [122].

    Google Scholar 

  120. Y. Calev, H. Cohen, G. Cuniberti, A. Nitzan, and D. Porath, Israel Journal of Chemistry 44, 133 (2004).

    Article  Google Scholar 

  121. H. C. D. P. R. Gutirrez, S. Mohapatra and G. Cuniberti, Phys. Rev. B 74, 235105 (2006).

    Article  ADS  Google Scholar 

  122. Long-Range Charge Transfer in DNA I and II, Vol. 237 of Topics in Current Chemistry, edited by G.B. Schuster (Springer, Berlin, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cuniberti, G., Maciá, E., Rodríguez, A., Römer, R.A. (2007). Tight-Binding Modeling of Charge Migration in DNA Devices. In: Chakraborty, T. (eds) Charge Migration in DNA. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72494-0_1

Download citation

Publish with us

Policies and ethics