Skip to main content

Resolution Sensitivity of a Compound Terrain Derivative as Computed from LiDAR-Based Elevation Data

  • Chapter
The European Information Society

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

New technologies such as Light Detection And Ranging (LiDAR) provide high resolution digital elevation data. These data offer new possibilities in the field of terrain modelling and analysis. However, not very much is known about the effects when these data are used to compute broadly applied terrain derivatives. In this paper the sensitivity of the Topographic Wetness Index (TWI) and its two constituting components gradient and Specific Catchment Area (SCA) regarding the resolution of LiDAR-based elevation data is examined. For coarser resolutions a shift in the TWI distribution to higher values is noted. TWI distributions at different resolutions differ significantly from each other. These findings have an impact on aspatial and spatial modelling based on the TWI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kienzle S. W.: The effect of DEM raster resolution on first order, second orderand compound terrain derivatives. Transactions in GIS 8 (2004) 83–111

    Article  Google Scholar 

  2. Beven K. J.: Rainfall-Runoff Modelling. The Primer. John Wiley & Sons Ltd., Chichester (2001)

    Google Scholar 

  3. Beven K. J., Kirkby M. J.: A physically based, variable contributing area model ofbasin hydrology. Hydrological Sciences Bulletin 24 (1979) 43–69

    Article  Google Scholar 

  4. Wolock D. M., Price C. V.: Effects of digital elevation model map scale and dataresolution on a topography-based watershed model. Water Resources Research 30(1994)3041–3052

    Article  Google Scholar 

  5. Zhang W., Montgomery D. R.: Digital elevation model grid size, landscaperepresentation, and hydrologic simulations. Water Resources Research 30 (1994)imeresolutiono

    Google Scholar 

  6. Bruneau P., Gascuel-Odoux C, Robin P., Merot Ph., Beven K. J.: Sensitivity tospace and time resolution of a hydrological model using digital elevation data.Hydrological Processes 9 (1995) 69–81

    Article  Google Scholar 

  7. Franchini M., Wendling J., Obled C, Todini E.: Physical interpretation andsensitivity analysis of the TOPMODEL. Journal of Hydrology 175 (1996) 293–338

    Article  Google Scholar 

  8. Saulnier G.-M., Obled C, Beven K.: Analytical compensation between DTM gridresolution and effective values of saturated hydraulic conductivity within theTOPMODEL framework. Hydrological Processes 11 (1997) 1331–1346

    Article  Google Scholar 

  9. Brasington J., Richards K.: Interactions between model predictions, parametersand DTM scales for TOPMODEL. Computers & Geosciences 24 (1998) 299–314

    Article  Google Scholar 

  10. Higy C, Musy A.: Digital terrain analysis of the Haute-Mentue catchment andscale effect for hydrological modelling with TOPMODEL. Hydrology and EarthSystem Sciences 4 (2000) 225–237

    Article  Google Scholar 

  11. Lane S. N., Brookes C. J., Kirkby M. J., Holden J.: A network-index-basedversion of TOPMODEL for use with high-resolution digital topographic data.Hydrological Processes 18 (2004) 191–201

    Article  Google Scholar 

  12. Blyth E. M., Finch J., Robinson M., Rosier P.: Can soil moisture be mapped ontothe terrain? Hydrology and Earth System Sciences 8 (2004) 923–930

    Article  Google Scholar 

  13. Guntner A., Seibert J., Uhlenbrook S.: Modeling spatial patterns of saturatedareas: An evaluation of different terrain indices. Water Resources Research 40(2004) W05114

    Google Scholar 

  14. Blazkova S., Beven K., Tacheci P., Kulasova A.: Testing the distributed watertable predictions of TOPMODEL (allowing for uncertainty in model calibration).The death of TOPMODEL? Water Resources Research 38 (2002) 1257

    Article  Google Scholar 

  15. Xu Z. X., Li J. Y.: Estimating basin evapotranspiration using distributedhydrologic model. Journal of Hydrologic Engineering 8 (2003) 74–80

    Article  Google Scholar 

  16. Stieglitz M., Shaman J., McNamara J., Engel V., Shanley J., Kling G. W.: Anapproach to understanding hydrologic connectivity on the hillslope and theimplications for nutrient transport. Global Biogeochemical Cycles 17 (2003) 1105

    Article  Google Scholar 

  17. Irvin B. J., Ventura S. J., Slater B. K.: Fuzzy and isodata classification oflandform elements from digital terrain data in Pleasant Valley, Wisconsin.Geoderma 77 (1997) 137–154

    Article  Google Scholar 

  18. MacMillan R. A., Pettapiece W. W., Nolan S. C, Goddard T. W.: A genericprocedure for automatically segmenting landforms into landform elements usingDEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems 113 (2000) 81–109

    Article  Google Scholar 

  19. Burrough P. A., van Gaansa P. F. M., MacMillan R. A.: High-resolutionlandform classification using fuzzy k-means. Fuzzy Sets and Systems 113 (2000)37–52

    Article  Google Scholar 

  20. Li Z., Qing Z., Gold, C: Digital Terrain Modeling. Principles and Methodology. CRC Press, Boca Rotan (2005)

    Google Scholar 

  21. Wilson J.P., Gallant J. (eds.): Terrain analysis: Principle and Applications. JohnWiley & Sons, Singapore (2000)

    Google Scholar 

  22. Vieux, B.E.: DEM aggregation and smoothing effects on surface runoffmodeling. Journal of Computing in Civil Engineering 7 (1993) 310–338

    Article  Google Scholar 

  23. Gao, J.: Resolution and accuracy of terrain representation by grid DEMs at amicro-scale. International Journal of Geographical Information Science 11 (1997)199–212

    Article  Google Scholar 

  24. Thompson J. A., Bell J. C, Butler C. A.: Digital elevation model resolution:effects on terrain attribute calculation and quantitative soil-landscape modeling.Geoderma 100 (2001) 67–89

    Article  Google Scholar 

  25. Claessens L., Heuvelink G. B. M., Schoorl J. M., Veldkamp A.: DEM resolutioneffects on shallow landslide hazard and soil redistribution modelling. EarthSurface Processes and Landforms 30 (2005) 461–477

    Article  Google Scholar 

  26. Wilson J. P., Repetto P. L., Snyder R. D.: Effect of data source, grid resolutionand flow-routing method on computed topographic attributes. In: Wilson J. P., Gallant J. C. (eds.): Terrain Analysis. Principles and Applications. John Wiley &Sons, New York (2000) 133–161

    Google Scholar 

  27. Garbrecht, J., Martz, L.: Grid size dependency of parameters extracted fromDigital Elevation Models. Computers & Geosciences 20 (1994) 85–87

    Article  Google Scholar 

  28. ESRI (2006): ArcGIS. http://www.esri.com/software/arcgis/about/desktop.html

  29. SAGA GIS (2006): A System for an Automated Geographical Analysis,http://www.saga-gis.uni-goettingen.de

  30. Quinn P., Beven K. J., Chevallier P., Planchon O.: The prediction of hillslopeflow paths for distributed hydrological modelling using digital terrain models.Hydrological Processes 5 (1991) 59–79

    Article  Google Scholar 

  31. Quinn P. F., Beven K. J., Lamb R.: The ln(A/tan beta) index-How to calculateit and how to use it within the TOPMODEL framework. Hydrological Processes9(1995) 161–182

    Article  Google Scholar 

  32. Evans I. S.: General geomorphometry, derivatives of altitude, and descriptivestatistics. In: Chorley R. J. (ed.): Spatial Analysis in Geomorphology. Methuen &Co. Ltd., London (1972) 17–90

    Google Scholar 

  33. Duke G. D., Kienzle S. W., Johnson D. L., Byrne J. M.: Improving overland flowrouting by incorporating ancillary road data into digital elevation models. Journalof Spatial Hydrology 3 (2003)

    Google Scholar 

  34. Duke G. D., Kienzle S. W., Johnson D. L., Byrne J. M.: Incorporating ancillarydata to refine anthropogenically modified overland flow paths. HydrologicalProcesses 20 (2006) 1827–1843

    Google Scholar 

  35. Holko L., Lepisto A.: Modelling the hydrological behaviour of a mountaincatchment using TOPMODEL. Journal of Hydrology 196 (1997) 361–377

    Article  Google Scholar 

  36. Wood J. D.: The geomorphological characterisation of digital elevation models.PhD thesis at the University of Leicester, UK (1996)

    Google Scholar 

  37. Raaflaub L. D.: The effect of error in gridded digital elevation models ontopographic analysis and on the distributed hydrological model TOPMODEL.MSc thesis at the University of Calgary, Alberta (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Straumann, R.K., Purves, R.S. (2007). Resolution Sensitivity of a Compound Terrain Derivative as Computed from LiDAR-Based Elevation Data. In: Fabrikant, S.I., Wachowicz, M. (eds) The European Information Society. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72385-1_5

Download citation

Publish with us

Policies and ethics