Skip to main content

Attacking the Inverse Electromagnetic Problem of the Heart with Computationally Compatible Anatomical and Histological Knowledge

  • Chapter
Advanced Computational Intelligence Paradigms in Healthcare-2

Abstract

For over one hundred years the electrocardiogram (ECG) remains an extremely useful clinical tool and continues to play a major role in the evaluation and management of patients with known or suspected cardiac disease. Interpretation of the 12-lead ECG is a simplistic solution to the “inverse electromagnetic problem” for the electrical activity of the heart, which is to extract information about the instantaneous electrical state of the cardiac muscle from measurements of the body surface potentials that are generated from the electrical activity of the heart. Although adequate for patient management in most instances, there are conditions for which the sensitivity of the 12-lead ECG is suboptimal, as for example for the diagnosis of a posterior wall myocardial infarction. To enhance the diagnostic value of the ECG, one would need to address in depth and provide an actual solution to the inverse electromagnetic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einthoven, W.: Nieuwe methoden voor clinisch onderzoek [New methods for clinical investigation]. Ned. T. Geneesk. 29 II (1893) 263-286

    Google Scholar 

  2. Einthoven, W.: Galvanometrische registratie van het menschilijk electrocar-diogram. In: Rosenstein, S.S. (ed.): Herinneringsbundel. Eduard Ijdo, Leiden (1902) 101-107

    Google Scholar 

  3. Kadish, A.H., Buxton, A.E., Kennedy, H.L., Knight, B.P., Mason, J.W., Schuger, C.D., Tracy, C.M., Boone, A.W., Elnicki, M., Hirshfeld, J.W., Lorell, B.H., Rodgers, G.P., Tracy, C.M., Weitz, H.H.: ACC/AHA Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardio-graphy. J.A.C.C. 38 (2001) 2091-2100

    Google Scholar 

  4. Mattu, A., Brady, W.J., Perron, A.D., Robinson, D.A.: Prominent R wave in lead V1: electrocardiographic differential diagnosis. Am. J. Emerg. Med. 19 (2001) 504-513

    Article  Google Scholar 

  5. Brugada, P., Brugada, R., Antzelevitch, C., Brugada, J.: The Brugada Syn- drome. Arch. Mal. Coeur. Vaiss. 98 (2005) 115-122

    Google Scholar 

  6. Francis, J., Antzelevitch, C.: Brugada syndrome. Int. J. Cardiol. 101 (2005) 173-178

    Article  Google Scholar 

  7. Smith, W.M., Barr, R.C.: The Forward and Inverse problems: What are they, why are they important, and where do we stand? J. Cardiov. Electrophysiol. 12 (2001) 253-255

    Article  Google Scholar 

  8. Malmivuo, J., Plonsey, R.: Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995).

    Google Scholar 

  9. Gulrajani, R.M.: The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag. 17 (1998) 84-101

    Article  Google Scholar 

  10. Ahmad, G.F., Brooks, D.H., MacLeod, R.S.: An admissible solution approach to inverse electrocardiography. Ann. Biomed. Eng. 26 (1998) 278-292

    Article  Google Scholar 

  11. Lepeschkin, E.: History of electrocardiographic thoracic mapping. In Rush, S., Lepeschkin, E. (eds): Body Surface Mapping of Cardiac Fields. Karger, Basel, (1974) 2-10

    Google Scholar 

  12. Savjaloff, V.: Methode der stereometrischen Elektrokardiographie. Z. Kreislaufforsch 21 (1929) 705

    Google Scholar 

  13. Carley, S.D.: Beyond the 12 lead: review of the use of additional leads for the early electrocardiographic diagnosis of acute myocardial infarction. Emerg. Med. (Fremantle). 15 (2003) 143-154

    Article  Google Scholar 

  14. Perloff, J.K.: The recognition of strictly posterior myocardial infarction by con-ventional scalar electrocardiography. Circulation 30 (1964) 706-718

    Google Scholar 

  15. Braat, S.H., Brugada, P., den Dulk, K., van Ommen, V., Wellens, H.J.: Value of lead V4R for recognition of the infarct coronary artery in acute inferior myocar-dial infarction. Am. J. Cardiol. 53 (1984) 1538-1541

    Article  Google Scholar 

  16. Matetzky, S., Freimark, D., Feinberg, M.S., Novikov, I., Rath, S., Rabinowitz, B., Kaplinsky, E., Hod, H.: Acute myocardial infarction with isolated ST-segment elevation in posterior chest leads V7-9: “hidden” ST- segment elevations revealing acute posterior infarction. J. Am. Coll. Cardiol. 34 (1999) 748-753

    Article  Google Scholar 

  17. Stewart, S., Haste, M.: Prediction of right ventricular and posterior wall ST elevation by coronary care nurses: the 12-lead electrocardiograph versus the 18-lead electrocardiograph. Heart-Lung 25 (1996) 14-23

    Article  Google Scholar 

  18. Green, L.S., Abildskov, J.A.: Clinical applications of body surface potential mapping. Clin. Cardiol. 18 (1995) 245-249

    Article  Google Scholar 

  19. Waller, A.: On the electromotive changes connected the beat of mammalian heart and of the human heart in particular. Philos. Trans. R. Soc. B (1889) 180-189

    Google Scholar 

  20. Hänninen, H.: Multichannel magnetocardiography and body surface potential mapping in exercise-induced myocardial ischemia. Academic Dissertation, Medi-cal Faculty of the University of Helsinki, Helsinki (2002)

    Google Scholar 

  21. Nadeau, R., Savard, P., Gulrajani, R., Cardinal, R., Molin, F., Page, P.: Clinical applications of BSM. J. Electrocardiol. 28 (1995) 334-335

    Article  Google Scholar 

  22. Menown, I.B., Patterson, R.S., MacKenzie, G., Adgey, A.A.: Body-surface map models for early diagnosis of acute myocardial infarction. J. Electrocardiol. 31 Suppl (1998) 180-188

    Article  Google Scholar 

  23. Maynard, S.J., Menown, I.B., Manoharan, G., Allen, J., McC Anderson, J., Adgey, A.A.: Body surface mapping improves early diagnosis of acute myocar- dial infarction in patients with chest pain and left bundle branch block. Heart 89 (2003) 998-1002

    Article  Google Scholar 

  24. Giorgi, C., Nadeau, R., Savard, P., Shenasa, M., Page, P.L., Cardinal, R.: Body surface isopotential mapping of the entire QRST complex in the Wolff-Parkinson-White syndrome. Correlation with the location of the accessory path-way. Am. Heart. J. 121 (1991) 1445-53

    Article  Google Scholar 

  25. Shibata, T., Kubota, I., Ikeda, K., Tsuiki, K., Yasui, S.: Body surface mapping of high-frequency components in the terminal portion during QRS complex for the prediction of ventricular tachycardia in patients with previous myocardial infarction. Circulation 82 (1990) 2084-2092

    Google Scholar 

  26. Mirvis, D.M.: Conduction abnormalities and ventricular hypertrophy. In: Mirvis, D.M. (eds): Body surface electrocardiographic mapping. Kluwer Academic Publishers, Boston (1988) 153

    Google Scholar 

  27. Kornreich, F., Montague, T.J., Rautaharju, P.M., Kavadias, M., Horacek, M.B.: Identification of best electrocardiographic leads for diagnosing left ventricular hypertrophy by statistical analysis of body surface potential maps. Am. J. Car-diol. 62 (1988) 1285-1291

    Article  Google Scholar 

  28. Carley, S.D., Jenkinsm, M., Jones, K.M.: Body surface mapping versus the stan-dard 12 lead ECG in the detection of myocardial infarction amongst Emergency Department patients: a Bayesian approach. Resuscitation 64 (2005) 309-314

    Article  Google Scholar 

  29. Owens, C.G., McClelland, A.J., Walsh, S.J., Smith, B.A., Tomlin, A., Riddell, J.W., Stevenson, M., Adgey, A.A.: Prehospital 80-LAD mapping: does it add significantly to the diagnosis of acute coronary syndromes? J. Electrocardiol. 37 Suppl (2004) 223-232

    Article  Google Scholar 

  30. McClelland, A.J., Owens, C.G., Menown, I.B., Lown, M., Adgey, A.A.: Com-parison of the 80-lead body surface map to physician and to 12-lead electrocar-diogram in detection of acute myocardial infarction. Am. J. Cardiol. 92 (2003) 252-257

    Article  Google Scholar 

  31. Menown, I.B., Allen, J., Anderson, J.M., Adgey, A.A.: ST depression only on the initial 12-lead ECG: early diagnosis of acute myocardial infarction. Eur. Heart J. 22 (2001) 218-227

    Article  Google Scholar 

  32. Green, L.S., Lux, R.L., Haws, C.W.: Detection and localization of coronary artery disease with body surface mapping in patients with normal electrocardiograms. Circulation 76 (1987) 1290-1297

    Google Scholar 

  33. Kornreich, F., Montague, T.J., Rautaharju, P.M., Block, P., Warren, J.W., Horacek, M.B.: Identification of best electrocardiographic leads for diagnosing anterior and inferior myocardial infarction by statistical analysis of body surface potential maps. Am. J. Cardiol. 158 (1986) 863-871

    Article  Google Scholar 

  34. Taccardi, B., Punske, B.B., Lux, R.L., MacLeod, R.S., Ershler, P.R., Dustman, T.J., Vyhmeister, Y.: Useful lessons from body surface mapping. J. Cardiovasc. Electrophysiol. 9 (1998) 773-786

    Article  Google Scholar 

  35. Plonsey, R.: Bioelectric Phenomena. McGraw-Hill, New York (1969)

    Google Scholar 

  36. Tavarozzi, I., Comani, S., Del Gratta, C., Romani, G.L., Di Luzio, S., Brisinda, D., Gallina, S., Zimarino, M., Fenici, R., De Caterina, R.: Magne-tocardiography: current status and perspectives. Part I: Physical principles and instrumentation. Ital. Heart J. 3 (2002) 75-85

    Google Scholar 

  37. Frank, E.: An accurate, clinically practical system for spatial vectocardiography. Circulation 13 (1956) 737

    Google Scholar 

  38. Gulrajani, R.M., Roberge, F.A., Savard, P.: Moving dipole inverse ECG and EEG solutions. IEEE Trans. Biomed. Eng. 31 (1984) 903-910

    Article  Google Scholar 

  39. Miller, W.T. 3rd., Geselowitz, D.B.: Use of electric and magnetic data to obtain a multiple dipole inverse cardiac generator: a spherical model study. Ann. Biomed. Eng. 2 (1974) 343-360

    Article  Google Scholar 

  40. Beetner, D.G., Arthur, R.M.: Estimation of heart-surface potentials using regu-larized multipole sources. IEEE Trans. Biomed. Eng. 51 (2004) 1366-1373

    Article  Google Scholar 

  41. Huiskamp, G.J., van Oosterom, A.: Heart position and orientation in forward and inverse electrocardiography. Med. Biol. Eng. Comput. 30 (1992) 613-620

    Article  Google Scholar 

  42. Burleson, K.O., Schwartz, G.E.: Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis. Med. Hypotheses. 64 (2005) 1109-1116

    Article  Google Scholar 

  43. Amoore, J.N.: The Body effect and change of volume of the heart. J. Electro-cardiol. 18 (1985) 71-75

    Google Scholar 

  44. Petitjean, C., Rougon, N., Cluzel, P.: Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J. Cardiovasc. Magn. Reson. 7 (2005) 501-516

    Article  Google Scholar 

  45. He, B., Li, G., Zhang, X.: Noninvasive imaging of cardiac transmembrane poten-tials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Trans. Biomed. Eng. 50 (2003) 1190-1202

    Article  Google Scholar 

  46. Liu, C., He, B.: Effects of cardiac anisotropy on three-dimensional ECG local-ization inverse solutions: a model study. I.J.B.E.M. 7 (2005) 221-222

    Google Scholar 

  47. Taccardi, B., Macchi, E., Lux, R.L., Ershler, P.R., Spaggiari, S., Baruffi, S., Vyhmeister, Y.: Effect of myocardial fiber direction on epicardial potentials. Circulation 90 (1994) 3076-3090

    Google Scholar 

  48. Helm, P., Beg, M.F., Miller, M.I., Winslow, R.L.: Measuring and mapping car-diac fiber and laminar architecture using diffusion tensor MR imaging. Ann. N. Y. Acad. Sci. 1047 (2005) 296-307

    Article  Google Scholar 

  49. Holmes, A.A., Scollan, D.F., Winslow, R.L.: Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn. Reson. Med. 44 (2000) 157-161

    Article  Google Scholar 

  50. Rijcken, J., Bovendeerd, P.H., Schoofs, A.J., van Campen, D.H.: Arts T. Opti-mization of cardiac fiber orientation for homogeneous fiber strain during ejec-tion. Ann. Biomed. Eng. 27 (1999) 289-297

    Article  Google Scholar 

  51. Butman, S.M., Phibbs, B., Wild, J., Copeland, J.G.: One heart, two bodies: insight from the transplanted heart and its new electrocardiogram. Am. J. Car-diol. 66 (1990) 632-635

    Article  Google Scholar 

  52. Bruder, H., Scholz, B., Abraham-Fuchs, K.: The influence of inhomogeneous volume conductor models on the ECG and the MCG. Phys. Med. Biol. 39 (1994) 1949-1968

    Article  Google Scholar 

  53. Ramanathan, C., Rudy, Y.: Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials. J. Cardiovasc. Electrophysiol. 12 (2001) 229-240

    Article  Google Scholar 

  54. Klepfer, R.N., Johnson, C.R., Macleod, R.S.: The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study. IEEE Trans. Biomed. Eng. 44 (1997) 706-719

    Article  Google Scholar 

  55. Bradley, C.P., Pullan, A.J., Hunter, P.J.: Effects of material properties and geometry on electrocardiographic forward simulations. Ann. Biomed. Eng. 28 (2000) 721-741

    Article  Google Scholar 

  56. Van Dam, P.M., van Oosterom, A.: Volume conductor effects involved in the genesis of the P wave. Europace 7 Suppl 2 (2005) 30-38

    Google Scholar 

  57. Ikeda, K., Kubota, I., Yasui, S.: Effects of lung volume on body surface electro-cardiogram. Isointegral analysis of body surface maps in patients with chronic pulmonary emphysema. Jpn. Circ. J. 49 (1985) 284-291

    Google Scholar 

  58. Faes, T.J., van der Meij, H.A., de Munck, J.C., Heethaar, R.M.: The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol. Meas. 20 (1999) R1-10

    Article  Google Scholar 

  59. Fuller, H.D.: The contribution of blood chemistry to the electrical resistance of blood: an in vitro model. Acta. Physiol. Hung. 92 (2005):147-151

    Article  Google Scholar 

  60. Oreto, G., Luzza, F., Donato, A., Satullo, G., Calabro, M.P., Consolo, A., Arrigo, F.: Electrocardiographic changes associated with haematocrit variations. Eur. Heart J. 3 (1992) 634-637

    Google Scholar 

  61. Hyttinen, J., Puurtinen, H.G., Kauppinen, P., Nousiainen, J., Laarne, P., Malmivuo, J.: On the effects of model errors on forward and inverse ECG prob-lems I.J.B.E.M. 2 (2000) 13

    Google Scholar 

  62. Kinoshita, O., Kimura, G., Kamakura, S., Haze, K., Kuramochi, M., Shimomura, K., Omae, T.: Effects of hemodialysis on body surface maps in patients with chronic renal failure. Nephron 64 (1993) 580-586

    Article  Google Scholar 

  63. Miquel, M.E., Hill, D.L., Baker, E.J., Qureshi, S.A., Simon, R.D., Keevil, S.F., Razavi, R.S.: Three- and four-dimensional reconstruction of intra-cardiac anatomy from two-dimensional magnetic resonance images. Int. J. Cardiovasc. Imaging 19 (2003) 239-254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theofilogiannakos, E.K. et al. (2007). Attacking the Inverse Electromagnetic Problem of the Heart with Computationally Compatible Anatomical and Histological Knowledge. In: Vaidya, S., Jain, L.C., Yoshida, H. (eds) Advanced Computational Intelligence Paradigms in Healthcare-2. Studies in Computational Intelligence, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72375-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72375-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72374-5

  • Online ISBN: 978-3-540-72375-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics