Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 65))

Abstract

Since the first experiments on digital medical imaging, Pictures Archiving and Communication Systems (PACS) have been gaining acceptance along healthcare practitioners. PACS based infrastructures are currently being driven by powerful medical applications that rely completely on the seamless access to images' databases and related metadata. New and demanding applications such as study co-registration and content based retrieval are already driving PACS into new prominent roles.

In this chapter we will revise the major key factors that have promoted this technology. We will then present our own solution for a Web-based PACS and the results achieved by its use on a Cardiology Department. We will finally consider future applications that are pushing developmental research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DICOM-P5, Digital Imaging and Communications in Medicine (DICOM), Part 5: Data Structures and Encoding. 2004, National Electrical Manufacturers Association

    Google Scholar 

  2. DICOM-P6, Digital Imaging and Communications in Medicine (DICOM), Part 6: Data Dictionary. 2000, National Electrical Manufacturers Association

    Google Scholar 

  3. Thomas, J., et al., Digital Compression of Echocardiograms : Impact on Quan-titative Interpretation of Color Doppler Velocity. Digital Cardiac Imaging in the 21st Century: A Primer, 1997

    Google Scholar 

  4. Kennedy, J.M., et al., High-speed lossless compression for angiography image sequences. Proceeding of SPIE - Medical Imaging 2001: Visualization, Display, and Image-Guided Procedures, Seong K. Mun; Ed, 2001. 4319: pp. 582-589

    Google Scholar 

  5. Huang, H.K., PACS and Imaging Informatics: Basic Principles and Applications. 2004, New Jersey: Wiley-Liss; 2nd edition

    Google Scholar 

  6. Chen, T.J., et al., Quality degradation in lossy wavelet image compression. J Digit Imaging, 2003. 16(2): pp. 210-5

    Article  Google Scholar 

  7. Maede, A. and M. Deriche, Establishing perceptual limits for medical image compression. Proceedings of SPIE - Image Perception and Performance, 2001. 4324: pp. 204-210

    Google Scholar 

  8. Brennecke, R.u., et al., American College of Cardiology/ European Society of Cardiology international study of angiographic data compression phase III: Mea-surement of image quality differences at varying levels of data compression. J Am Coll Cardiol, 2000. 35(5): pp. 1388-1397

    Article  Google Scholar 

  9. Kerensky, R.A., et al., American College of Cardiology/European Society of Cardiology international study of angiographic data compression phase I: The effects of lossy data compression on recognition of diagnostic features in digital coronary angiography. J Am Coll Cardiol, 2000. 35(5): pp. 1370-1379

    Article  Google Scholar 

  10. Tuinenburg, J.C., et al., American College of Cardiology/ European Society of Cardiology international study of angiographic data compression phase II: The effects of varying JPEG data compression levels on the quantitative assessment of the degree of stenosis in digital coronary angiography. J Am Coll Cardiol, 2000.35 (5): pp. 1380-1387

    Article  Google Scholar 

  11. Umeda, A., et al., A low-cost digital filing system for echocardiography data with MPEG4 compression and its application to remote diagnosis. Journal of the American Society of Echocardiography, 2004. 17(12): pp. 1297-1303

    Article  Google Scholar 

  12. Segar, D.S., et al., A Comparison of the Interpretation of Digitized and Video-tape Recorded Echocardiograms, Journal of the American Society of Echocar-diography, 1999. 12(9): pp. 714-719

    Article  Google Scholar 

  13. Karson, T.H., et al., Digital storage of echocardiograms offers superior image quality to analog storage, even with 20:1 digital compression: Results of the digital echo record access study. Journal of the American Society of Echocar-diography, 1996. 9(6): pp. 769-778

    Article  Google Scholar 

  14. Huffman, D.A., A method for the construction of minimum redundancy codes. Proceedings IRE, 1952. 40: pp. 1098-1101

    Article  Google Scholar 

  15. DICOM-SUPL61, Digital Imaging and Communications in Medicine (DICOM), Supplement61: JPEG2000Transfer Syntaxes.2002, National Electrical Manufacturers Association

    Google Scholar 

  16. JPEG2000, ISO/IEC JTC1/SC29 WG1, FCD15444: JPEG 2000 Image Coding System Part 1 - Final Committee Draft Version 1.0. 2000

    Google Scholar 

  17. DICOM-SUPL42, Digital Imaging and Communications in Medicine (DICOM), Supplement 42: MPEG2 Transfer Syntax. 2004, National Electrical Manufac-turers Association

    Google Scholar 

  18. Marvie, R., Pellegrini, M. et al. Value-added Services: How to Benefit from Smart Cards. in GDC2000. 2000. Montpellier, France

    Google Scholar 

  19. Gobioff, H., et al. Smart Cards In Hostile Environments. in Proceedings of The Second USENIX Workshop on Electronic Commerce. 1996. Oakland, U.S.A.

    Google Scholar 

  20. Hachez, G., F. Koeune, and J. Quisquater, Biometrics, Access Control, Smart Cards: A Not So Simple Combination, in Security Focus Magazine. 2001 October

    Google Scholar 

  21. Costa, C.M.A., et al., A demanding web-based PACS supported by web services technology. Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display. Edited by Cleary, Kevin R.; Galloway, Robert L., Jr. Proceedings of the SPIE, 2006. 6145: pp. 84-92

    Google Scholar 

  22. Costa, C., et al., A New Concept for an Integrated Healthcare Access Model. MIE2003: Health Technology and Informatics - IOS Press, 2003. 95: pp. 101-106

    Google Scholar 

  23. Costa, C., et al. Himage PACS: A New Approach to Storage, Integration and Distribution of Cardiologic Images. in PACS and Imaging Informatics -Proceedings of SPIE. 2004. San Diego - CA - USA.

    Google Scholar 

  24. Bernarding, J., A. Thiel, and T. Tolxdorff, Realization of security concepts for DICOM-based distributed medical services. Methods Inf Med, 2000. 39(4-5): pp. 348-52

    Google Scholar 

  25. DICOM-P8, Digital Imaging and Communications in Medicine (DICOM), Part 8: Network Communication Support for Message Exchange. 2003, National Electrical Manufacturers Association

    Google Scholar 

  26. DICOM-P18, Digital Imaging and Communications in Medicine (DICOM), Part 18: Web Access to DICOM Persistent Objects (WADO). 2004, National Electrical Manufacturers Association

    Google Scholar 

  27. Silva, A., et al. A Cardiology Oriented PACS. in Proceedings of SPIE: Medical Imaging. 1998. San Diego - USA.

    Google Scholar 

  28. Costa, C., et al., A Transcontinental Telemedicine Platform for Cardiovascular Ultrasound. Technology and Health Care - IOS Press, 2002. 10(6): pp. 460-462

    Google Scholar 

  29. Karson, T., et al., JPEG Compression Echocardiographic Images: Impact on Image Quality. Journal of the American Society of Echocardiography, 1995. Volume 8 - Number 3

    Google Scholar 

  30. IBM Corporation and Microsoft Corporation, Multimedia Programming Inter- face and Data Specifications 1.0. 2001

    Google Scholar 

  31. Zhanga, J., J. Suna, and J.N. Stahl, PACS and Web-based image distribution and display. Computerized Medical Imaging and Graphics - Elsevier, 2003. 27: pp. 197-206

    Article  Google Scholar 

  32. Costa, C., et al. Arquivo e transmissão digital de imagem para tele-ecocardiografia transcontinental. in II Congresso Luso Moçambicano de Engenharia. 2001. Maputo - Moçambique

    Google Scholar 

  33. Costa, C., J.L. Oliveira, and A. Silva. An Integrated access interface to multi-media EPR. in CARS2003. 2003. London - UK

    Google Scholar 

  34. Huang, H.K., Medical imaging informatics research and development trends-an editorial. Computerized Medical Imaging and Graphics, 2005. 29(2-3): pp. 91-93

    Article  Google Scholar 

  35. Huang, H., PACS and Imaging Informatics. 2004, New Jersey: Wiley-Liss

    Book  Google Scholar 

  36. Hill01, et al., Medical image registration. Physics in Medicine and Biology, 2001 (3): pp. 1-45

    Google Scholar 

  37. Fitzpatrick, J.M., D.L.G. Hill, and J. Calvin R. Maurer, Image Registration, in Handbook of Medical Imaging, M. Sonka and J.M. Fitzpatrick, Editors. 2000, SPIE Press. pp. 447-514

    Google Scholar 

  38. Maintz, J.B.A. and M.A. Viergever, A survey of medical image registration. Medical Image Analysis, 1998. 2(1): pp. 1-36

    Article  Google Scholar 

  39. Makela, T., et al., A review of cardiac image registration methods. Medical Imaging, IEEE Transactions on, 2002. 21(9): pp. 1011-1021

    Article  Google Scholar 

  40. Shekkar04, et al., Registration of real-time 3-D ultrasound images of the heart for novel 3-D stress echocardiography. Medical Imaging, IEEE Transactions on, 2004. 23(9): pp. 1141-1149

    Article  Google Scholar 

  41. Lacomis, J.M., et al., Multi-Detector Row CT of the Left Atrium and Pul-monary Veins before Radio-frequency Catheter Ablation for Atrial Fibrillation. Radiographics, 2003. 23(90001): pp. 35S-48

    Article  Google Scholar 

  42. Kapoor, V., B.M. McCook, and F.S. Torok, An Introduction to PET-CT Imag-ing. Radiographics, 2004. 24(2): pp. 523-543

    Article  Google Scholar 

  43. Schwaiger, M., S. Ziegler, and S.G. Nekolla, PET/CT: Challenge for Nuclear Cardiology. J Nucl Med, 2005. 46(10): pp. 1664-1678

    Google Scholar 

  44. Utsunomiya, D., et al., Object-specific Attenuation Correction at SPECT/CT in Thorax: Optimization of Respiratory Protocol for Image Registration, Radi-ology, 2005. 237(2): pp. 662-669

    Article  Google Scholar 

  45. Tagare, H.D., C.C. Jaffe, and J. Duncan, Medical Image Databases: A Content-based Retrieval Approach. J Am Med Inform Assoc, 1997. 4(3): pp. 184-198

    Google Scholar 

  46. Aisen, A.M., et al., Automated Storage and Retrieval of Thin-Section CT Images to Assist Diagnosis: System Description and Preliminary Assessment. Radiology, 2003.228 (1): pp. 265-270

    Article  Google Scholar 

  47. Shyu, C.-R., et al., ASSERT: A Physician-in-the-Loop Content-Based Retrieval System for HRCT Image Databases. Computer Vision and Image Understand-ing, 1999. 75(1-2): pp. 111-132

    Article  Google Scholar 

  48. Sinha, U. and H. Kangarloo, Principal Component Analysis for Content-based Image Retrieval. Radiographics, 2002. 22(5): pp. 1271-1289

    Google Scholar 

  49. Bucci, G., S. Cagnoni, and R. De Dominicis, Integrating content-based retrieval in a medical image reference database. Computerized Medical Imaging and Graphics, 1996. 20(4): pp. 231-241

    Article  Google Scholar 

  50. Robinson, G.P., et al., Medical image collection indexing: Shape-based retrieval using KD-trees. Computerized Medical Imaging and Graphics Medical Image Databases, 1996. 20(4): pp. 209-217

    Article  Google Scholar 

  51. Taira, R.K., S.G. Soderland, and R.M. Jakobovits, Automatic Structuring of Radiology Free-Text Reports. Radiographics, 2001. 21(1): pp. 237-245

    Google Scholar 

  52. Hussein, R., et al., DICOM Structured Reporting: Part 1. Overview and Char-acteristics. Radiographics, 2004. 24(3): pp. 891-896

    Article  Google Scholar 

  53. Hussein, R., et al., DICOM Structured Reporting: Part 2. Problems and Chal-lenges in Implementation for PACS Workstations. Radiographics, 2004. 24(3): pp. 897-909

    Article  Google Scholar 

  54. Muller, H., et al., A review of content-based image retrieval systems in medical applications-clinical benefits and future directions. International Journal of Medical Informatics, 2004. 73(1): pp. 1-23

    Article  Google Scholar 

  55. Sigal, R., PACS as an e-academic tool. International Congress Series, 2005. 1281: pp. 900-904

    Article  Google Scholar 

  56. Obuchowski, N.A., ROC Analysis. Am. J. Roentgenol., 2005. 184(2): pp. 364-372

    Google Scholar 

  57. Blackmore, C.C., The Challenge of Clinical Radiology Research. Am. J. Roentgenol., 2001. 176(2): pp. 327-331

    Google Scholar 

  58. Weinstein, S., N.A. Obuchowski, and M.L. Lieber, Clinical Evaluation of Diag-nostic Tests. Am. J. Roentgenol., 2005. 184(1): pp. 14-19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costa, C., Silva, A., Oliveira, J.L. (2007). Current Perspectives on PACS and a Cardiology Case Study. In: Vaidya, S., Jain, L.C., Yoshida, H. (eds) Advanced Computational Intelligence Paradigms in Healthcare-2. Studies in Computational Intelligence, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72375-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72375-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72374-5

  • Online ISBN: 978-3-540-72375-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics