Skip to main content

Molecular Mechanisms of Radiation Induced Injury

  • Chapter
  • First Online:
ALERT - Adverse Late Effects of Cancer Treatment

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1507 Accesses

Abstract

Radiation-induced normal tissue injury represents a major impediment to the successful achievement of the desired clinical outcome from radiation therapy (RT) for cancer patients; usually improved local control, reduced risk for disease reoccurrence, and increased survival. Complications associated with RT can result in diminished quality of life and carries the potential for severe debilitating disease. The development of normal tissue protectors/radiomitigators is dependent on improved understanding of the molecular mechanisms associated with the development of acute and long-term RT-induced tissue toxicity. The following chapter provides a comprehensive review of the current state of knowledge with respect to those mechanisms underlying radiation-induced normal tissue pathologies. Future scientific endeavors will build upon this groundwork to delve deeper into the mechanistic understanding of disease onset and progression and develop new agents that can be translated from bench to bedside to reduce the risk for RT-induced complications.

In memory of George Casarett

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amara N, Goven D, Prost F et al (2010) NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax 65(8):733–738

    Article  PubMed  Google Scholar 

  • Anscher MS, Chen L, Rabbani Z et al (2005) Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy. Int J Radiat Oncol Biol Phys 62(1):255–259

    Article  PubMed  Google Scholar 

  • Anscher MS, Thrasher B, Zgonjanin L et al (2008) Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 71(3):829–837

    Article  PubMed  CAS  Google Scholar 

  • Azria D, Ozsahin M, Kramar A et al (2008) Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin Cancer Res 14(19):6284–6288

    Article  PubMed  CAS  Google Scholar 

  • Bartholdi D, Rubin BP, Schwab ME (1997) VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 9(12):2549–2560

    Article  PubMed  CAS  Google Scholar 

  • Batinic-Haberle I, Reboucas JS, Spasojevic I (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13(6):877–918

    Google Scholar 

  • Belyakov OV, Mitchell SA, Parikh D et al (2005) Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc Natl Acad Sci U S A 102(40):14203–14208

    Article  PubMed  CAS  Google Scholar 

  • Benderitter M, Isoir M, Buard V et al (2007) Collapse of skin antioxidant status during the subacute period of cutaneous radiation syndrome: a case report. Radiat Res 167(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson SH, Gulluyan LM, Dusting GJ et al (2003) Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 30(11):849–854

    Article  PubMed  CAS  Google Scholar 

  • Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6(9):702–713

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Guix M, Rinehart C et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117(5):1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Brahimi-Horn C, Mazure N, Pouyssegur J (2005) Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal 17(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Brush J, Lipnick SL, Phillips T et al (2007) Molecular mechanisms of late normal tissue injury. Semin Radiat Oncol 17(2):121–130

    Article  PubMed  Google Scholar 

  • Carnesecchi S, Deffert C, Donati Y et al (2011) A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 15(3):607–619

    Google Scholar 

  • Cernanec JM, Weinberg JB, Batinic-Haberle I et al (2007) Influence of oxygen tension on interleukin 1-induced peroxynitrite formation and matrix turnover in articular cartilage. J Rheumatol 34(2):401–407

    PubMed  CAS  Google Scholar 

  • Chiang CS, Hong JH, Stalder A et al (1997) Delayed molecular responses to brain irradiation. Int J Radiat Biol 72(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Collins-Underwood JR, Zhao W, Sharpe JG et al (2008) NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells. Free Radic Biol Med 45(6):929–938

    Article  PubMed  CAS  Google Scholar 

  • DeVita VT, Lawrence TS, Rosenburg SA et al (eds) (2011) In: Devita, Hellman, and Rosenberg’s Cancer: principles and practice of oncology, vol. 5, 9th edn. Lippincott Williams & Wilkins, Philadelphia 5: pp 57–67

    Google Scholar 

  • Dorr W, Baumann M, Herrmann T (2000) Radiation-induced lung damage: a challenge for radiation biology, experimental and clinical radiotherapy. Int J Radiat Biol 76(4):443–446

    Article  PubMed  CAS  Google Scholar 

  • Ehrhart EJ, Segarini P, Tsang ML et al (1997) Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. Faseb J 11(12):991–1002

    PubMed  CAS  Google Scholar 

  • Epperly MW, Bray JA, Krager S et al (1999a) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys 43(1):169–181

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Travis EL, Sikora C et al (1999b) Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transpl 5(4):204–214

    Article  CAS  Google Scholar 

  • Epperly MW, Defilippi S, Sikora C et al (2002) Radioprotection of lung and esophagus by overexpression of the human manganese superoxide dismutase transgene. Mil Med 167(2 Suppl):71–73

    PubMed  Google Scholar 

  • Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85(2):47–64

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein K, Gauter-Fleckenstein B, Jackson IL et al (2007a) Using biological markers to predict risk of radiation injury. Semin Radiat Oncol 17(2):89–98

    Article  PubMed  Google Scholar 

  • Fleckenstein K, Zgonjanin L, Chen L et al (2007b) Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys 68(1):196–204

    Article  PubMed  CAS  Google Scholar 

  • Frangogiannis NG (2006) Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13(16):1877–1893

    Article  PubMed  CAS  Google Scholar 

  • Franko AJ, Sharplin J, Ghahary A et al (1997) Immunohistochemical localization of transforming growth factor beta and tumor necrosis factor alpha in the lungs of fibrosis-prone and “non-fibrosing” mice during the latent period and early phase after irradiation. Radiat Res 147(2):245–256

    Article  PubMed  CAS  Google Scholar 

  • Gaugler MH, Squiban C, van der Meeren A et al (1997) Late and persistent up-regulation of intercellular adhesion molecule-1 (ICAM-1) expression by ionizing radiation in human endothelial cells in vitro. Int J Radiat Biol 72(2):201–209

    Article  PubMed  CAS  Google Scholar 

  • Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al (2007) Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 44(6):982–989

    Google Scholar 

  • Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al (2010) Early and late administration of MnTE-2-PyP5 + in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med 48(8):1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Ghosh SN, Zhang R, Fish BL et al (2009a) Renin-Angiotensin system suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys 75(5):1528–1536

    Article  PubMed  CAS  Google Scholar 

  • Ghosh SN, Wu Q, Mader M et al (2009b) Vascular injury after whole thoracic x-ray irradiation in the rat. Int J Radiat Oncol Biol Phys 74(1):192–199

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DE, Virudachalam S (1997) Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc Natl Acad Sci U S A 94(12):6432–6437

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiation-induced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94(10):733–741

    Article  PubMed  CAS  Google Scholar 

  • Haroon ZA, Lai TS, Hettasch JM et al (1999) Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth. Lab Invest 79(12):1679–1686

    PubMed  CAS  Google Scholar 

  • Herskind C, Bamberg M, Rodemann HP (1998) The role of cytokines in the development of normal-tissue reactions after radiotherapy. Strahlenther Onkol 174(Suppl 3):12–15

    PubMed  Google Scholar 

  • Hill RP (2005) Radiation effects on the respiratory system. BJR Suppl 27:75–81

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M et al (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95(14):7987–7992

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Ito M, Matsuu M et al (2000) Expression of ICAM-1 and acute inflammatory cell infiltration in the early phase of radiation colitis in rats. J Radiat Res (Tokyo) 41(3):279–291

    Article  CAS  Google Scholar 

  • Jaal J, Dorr W (2005) Early and long-term effects of radiation on intercellular adhesion molecule 1 (ICAM-1) expression in mouse urinary bladder endothelium. Int J Radiat Biol 81(5):387–395

    Article  PubMed  CAS  Google Scholar 

  • Jackson IL, Chen L, Batinic-Haberle I et al (2007) Superoxide dismutase mimetic reduces hypoxia-induced O2*-, TGF-beta, and VEGF production by macrophages. Free Radic Res 41(1):8–14

    Article  PubMed  CAS  Google Scholar 

  • Kelsey CR, Jackson L, Langdon S et al (2011) A polymorphism within the promoter of the tgfbeta1 gene is associated with radiation sensitivity using an objective radiologic endpoint. Int J Radiat Oncol Biol Phys 82(2):e247–e255

    Google Scholar 

  • Kong FM, Ao X, Wang L et al (2008) The use of blood biomarkers to predict radiation lung toxicity: a potential strategy to individualize thoracic radiation therapy. Cancer Control 15(2):140–150

    PubMed  Google Scholar 

  • Kureshi SA, Hofman FM, Schneider JH et al (1994) Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery 35(5):822–829; discussion 829–830

    Google Scholar 

  • Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30(4):653–661

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Lee JA, Underwood JC et al (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66(6):889–900

    PubMed  CAS  Google Scholar 

  • Li F, Sonveaux P, Rabbani ZN et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26(1):63–74

    Article  PubMed  Google Scholar 

  • Martin M, Delanian S, Sivan V et al (2000) Radiation-induced superficial fibrosis and TGF-alpha 1. Cancer Radiother 4(5):369–384

    Article  PubMed  CAS  Google Scholar 

  • McBride WH, Chiang CS, Olson JL et al (2004) A sense of danger from radiation. Radiat Res 162(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Michalowski A (1986) The pathogenesis of the late side-effects of radiotherapy. Clin Radiol 37(3):203–207

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37):5734–5754

    Article  PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2002) Dietary sodium modification and experimental radiation nephropathy. Int J Radiat Biol 78(10):903–911

    Article  PubMed  CAS  Google Scholar 

  • Muller K, Kohn FM, Port M et al (2006) Intercellular adhesion molecule-1: a consistent inflammatory marker of the cutaneous radiation reaction both in vitro and in vivo. Br J Dermatol 155(4):670–679

    Article  PubMed  CAS  Google Scholar 

  • Nishioka A, Ogawa Y, Mima T et al (2004) Histopathologic amelioration of fibroproliferative change in rat irradiated lung using soluble transforming growth factor-beta (TGF-beta) receptor mediated by adenoviral vector. Int J Radiat Oncol Biol Phys 58(4):1235–1241

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TJ, Letuve S, Haston CK (2005) Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis. Can J Physiol Pharmacol 83(1):117–122

    Article  PubMed  Google Scholar 

  • Olschowka JA, Kyrkanides S, Harvey BK et al (1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Behav Immun 11(4):273–285

    Article  PubMed  CAS  Google Scholar 

  • O’Neill P, Wardman P (2009) Radiation chemistry comes before radiation biology. Int J Radiat Biol 85(1):9–25

    Article  PubMed  Google Scholar 

  • Pouyssegur J, Mechta-Grigoriou F (2006) Redox regulation of the hypoxia-inducible factor. Biol Chem 387(10–11):1337–1346

    PubMed  CAS  Google Scholar 

  • Pouyssegur J, Franchi A, Pages G (2001) pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found Symp 240:186–196 (discussion 196–188)

    Google Scholar 

  • Rabbani ZN, Anscher MS, Folz RJ et al (2005) Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity. BMC Cancer 5:59

    Article  PubMed  Google Scholar 

  • Rabbani ZN, Batinic-Haberle I, Anscher MS et al (2007) Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 67(2):573–580

    Article  PubMed  CAS  Google Scholar 

  • Robbins ME, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80(4):251–259

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB (1999) TGF-beta signaling from receptors to the nucleus. Microbes Infect 1(15):1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal RA, Fish B, Hill RP et al (2011) Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med Chem 11(4):359–372

    Google Scholar 

  • Rube CE, Wilfert F, Palm J et al (2004) Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther Onkol 180(7):442–448

    Article  PubMed  Google Scholar 

  • Rubin P, Williams J (eds) (2001) Clinical oncology: a multidisciplinary approach for physicians and students, 8th edn. Elsevier, Philadelphia, p 899, Figure 34-2ab

    Google Scholar 

  • Rubin P, Johnston CJ, Williams JP et al (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33(1):99–109

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2000) Oxygen-regulated transcription factors and their role in pulmonary disease. Respir Res 1(3):159–162

    Article  PubMed  CAS  Google Scholar 

  • Son EW, Rhee DK, Pyo S (2006) Gamma-irradiation-induced intercellular adhesion molecule-1 (ICAM-1) expression is associated with catalase: activation of Ap-1 and JNK. J Toxicol Environ Health A 69(24):2137–2155

    Article  PubMed  CAS  Google Scholar 

  • Stone HB, Moulder JE, Coleman CN et al (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI workshop, 3–4 Dec, 2003. Radiat Res;162(6):711–728

    Google Scholar 

  • Takac I, Schroder K, Zhang L et al (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313

    Article  PubMed  CAS  Google Scholar 

  • van Hinsbergh VW (2001a) NO or H(2)O(2) for endothelium-dependent vasorelaxation: Tetrahydrobiopterin makes the difference. Arterioscler Thromb Vasc Biol 21(5):719–721

    Article  PubMed  Google Scholar 

  • van Hinsbergh VW (2001b) The endothelium: vascular control of haemostasis. Eur J Obstet Gynecol Reprod Biol 95(2):198–201

    Article  PubMed  Google Scholar 

  • van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936:426–437

    Article  PubMed  Google Scholar 

  • von Lohneysen K, Noack D, Wood MR et al (2010) Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. Mol Cell Biol 30(4):961–975

    Article  Google Scholar 

  • Vujaskovic Z, Anscher MS, Feng QF et al (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50(4):851–855

    Article  PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Batinic-Haberle I, Rabbani ZN et al (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33(6):857–863

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  PubMed  CAS  Google Scholar 

  • Wang LW, Fu XL, Clough R et al (2000) Can angiotensin-converting enzyme inhibitors protect against symptomatic radiation pneumonitis? Radiat Res 153(4):405–410

    Article  PubMed  CAS  Google Scholar 

  • Ward JF (1994) DNA damage as the cause of ionizing radiation-induced gene activation. Radiat Res 138( Suppl 1):S85–S88

    Article  PubMed  CAS  Google Scholar 

  • Ward WF, Solliday NH, Molteni A et al (1983) Radiation injury in rat lung II. Angiotensin-converting enzyme activity. Radiat Res 96(2):294–300

    Article  PubMed  CAS  Google Scholar 

  • Xavier S, Piek E, Fujii M et al (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 279(15):15167–15176

    Article  PubMed  CAS  Google Scholar 

  • Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161

    Google Scholar 

  • Zhang Y, Hogg N (2005) S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med 38(7):831–838

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y Zhang X, Rabbani ZN et al (2012) Oxidative stress mediates lung injury by inducing apoptosis. Int J Radiat Oncol Biol Phys 83(2):740–748

    Google Scholar 

  • Zhao W, Diz DI, Robbins ME (2007) Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 80(1):S23–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Rubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, I.L., Rubin, P., Hadley, C., Vujaskovic, Z. (2014). Molecular Mechanisms of Radiation Induced Injury. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT - Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72314-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72314-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72313-4

  • Online ISBN: 978-3-540-72314-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics