Skip to main content

Minimal Residual Disease Studies in Acute Lymphoblastic Leukemia

  • Chapter
Book cover Acute Leukemias

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 2551 Accesses

Abstract

Considerable progress has been made in the treatment of both childhood and adult acute lymphoblastic leukemia (ALL) during the past two decades. The majority of both children and adults achieve a complete remission (CR) while the majority of children are now cured with current therapies, most adults will ultimately experience a relapse and die of their leukemia. The ability to distinguish good-risk patients who are likely to be cured with conventional chemotherapy from those who are likely to relapse has important clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller CB, et al. (1991) Correlation of occult clonogenic leukemia drug sensitivity with relapse after autologous bone marrow transplantation. Blood 78(4):1125–1131

    PubMed  CAS  Google Scholar 

  2. Potter MN, et al. (1993) Molecular evidence of minimal residual disease after treatment for leukaemia and lymphoma: An updated meeting report and review. Leukemia 7(8):1302–1314

    PubMed  CAS  Google Scholar 

  3. Pui CH, Campana D (2000) New definition of remission in childhood acute lymphoblastic leukemia. Leukemia 14(5):783–785

    PubMed  CAS  Google Scholar 

  4. Campana D, Pui CH (1995) Detection of minimal residual disease in acute leukemia: Methodologic advances and clinical significance. Blood 85(6):1416–1434

    PubMed  CAS  Google Scholar 

  5. Szczepanski T, et al. (2001) Minimal residual disease in leukaemia patients. Lancet Oncol 2(7):409–417

    PubMed  CAS  Google Scholar 

  6. Vidriales MB, et al. (2003) Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 16(4):599–612

    PubMed  Google Scholar 

  7. Campana D, Coustan-Smith E (2002) Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 15(1):1–19

    PubMed  Google Scholar 

  8. Coustan-Smith E, et al. (1998) Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 351(9102):550–554

    PubMed  CAS  Google Scholar 

  9. Inoue K, et al. (1994) WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84(9):3071–3079

    PubMed  CAS  Google Scholar 

  10. Inoue K, et al. (1997) Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 89(4):1405–1412

    PubMed  CAS  Google Scholar 

  11. Miyagi T, et al. (1993) Expression of the candidate Wilm’s tumor gene, WT1, in human leukemia cells. Leukemia 7(7):970–977

    PubMed  CAS  Google Scholar 

  12. Bergmann L, et al. (1997) High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90(3):1217–1225

    PubMed  CAS  Google Scholar 

  13. Sugiyama H (1998) Wilms tumor gene (WT1) as a new marker for the detection of minimal residual disease in leukemia. Leuk Lymphoma 30(1–2):55–61

    PubMed  CAS  Google Scholar 

  14. Miwa H, Beran M, Saunders GF (1992) Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 6(5):405–409

    PubMed  CAS  Google Scholar 

  15. Menssen HD, et al. (1995) Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 9(6):1060–1067

    PubMed  CAS  Google Scholar 

  16. Inoue K, et al. (1996) Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood 88(6):2267–2278

    PubMed  CAS  Google Scholar 

  17. Tamaki H, et al. (1996) Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood 88(11):4396–4398

    PubMed  CAS  Google Scholar 

  18. Ogawa H, et al. (2003) The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 101(5):1698–1704

    PubMed  CAS  Google Scholar 

  19. Garg M, et al. (2003) Prognostic significance of quantitative analysis of WT1 gene transcripts by competitive reverse transcription polymerase chain reaction in acute leukaemia. Br J Haematol 123(1):49–59

    PubMed  CAS  Google Scholar 

  20. Cilloni D, et al. (2002) Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 16(10):2115–2121

    PubMed  CAS  Google Scholar 

  21. Kreuzer KA, et al. (2001) Fluorescent 5’-exonuclease assay for the absolute quantification of Wilms’ tumour gene (WT1) mRNA: Implications for monitoring human leukaemias. Br J Haematol 114(2):313–318

    PubMed  CAS  Google Scholar 

  22. Pongers-Willemse MJ, et al. (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: Report of the BIOMED-1 CONCERTED ACTION: Investigation of minimal residual disease in acute leukemia. Leukemia 13(1):110–118

    PubMed  CAS  Google Scholar 

  23. van Dongen JJ, Wolvers-Tettero IL (1991) Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 198(1–2):93–174

    PubMed  Google Scholar 

  24. van Dongen JJ, et al. (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia 13(12):1901–1928

    PubMed  Google Scholar 

  25. Hunger SP (1996) Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: Clinical features and molecular pathogenesis. Blood 87(4):1211–1224

    PubMed  CAS  Google Scholar 

  26. Hunger SP, et al. (1998) E2A-PBX1 chimeric transcript status at end of consolidation is not predictive of treatment outcome in childhood acute lymphoblastic leukemias with a t(1;19)(q23;p13): A Pediatric Oncology Group study. Blood 91(3):1021–1028

    PubMed  CAS  Google Scholar 

  27. Privitera E, et al. (1992) Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 79(7):1781–1788

    PubMed  CAS  Google Scholar 

  28. Devaraj PE, et al. (1995) Expression of the E2A-PBX1fusion transcripts in t(1;19)(q23;p13) and der(19)t(1;19) at diagnosis and in remission of acute lymphoblastic leukemia with different B lineage immunophenotypes. Leukemia 9(5):821–825

    PubMed  CAS  Google Scholar 

  29. Lanza C, et al. (1996) Persistence of E2A/PBX1 transcripts in t(1;19) childhood acute lymphoblastic leukemia: Correlation with chemotherapy intensity and clinical outcome. Leuk Res 20(5):441–443

    PubMed  CAS  Google Scholar 

  30. Group Francais de Cytogenetique Hematologique (1996) Cytogenetic abnormalities in adult acute lymphoblastic leukemia: Correlations with hematologic findings outcome. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. Blood 87(8):3135–3142

    Google Scholar 

  31. Gabert J, et al. (2001) Improved outcome of Adult patients with E2A PBX1/t(1;19) positive ALL after intensive therapy: Results of the LAL-94 multicentric protocol. Blood 98:840a

    Google Scholar 

  32. Secker-Walker LM, et al. (1997) Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. Br J Haematol 96(3):601–610

    PubMed  CAS  Google Scholar 

  33. Foa R, et al. (2003) E2A-PBX1fusion in adult acute lymphoblastic leukaemia: Biological and clinical features. Br J Haematol 120(3): 484–487

    PubMed  CAS  Google Scholar 

  34. Romana SP, et al. (1995) High frequency of t(12;21) in childhood Blineage acute lymphoblastic leukemia. Blood 86(11):4263–4269

    PubMed  CAS  Google Scholar 

  35. Shurtleff SA, et al. (1995) TEL/AML1fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9(12):1985–1989

    PubMed  CAS  Google Scholar 

  36. Raynaud S, et al. (1996) The 12;21 translocation involving TEL and deletion of the other TEL allele: Two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 87(7):2891–2899

    PubMed  CAS  Google Scholar 

  37. Borkhardt A, et al. (1997) Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood 90(2):571–577

    PubMed  CAS  Google Scholar 

  38. de Haas V, et al. (2002) The TEL-AML1 real-time quantitative polymerase chain reaction (PCR) might replace the antigen receptorbased genomic PCR in clinical minimal residual disease studies in children with acute lymphoblastic leukaemia. Br J Haematol 116(1):87–93

    PubMed  Google Scholar 

  39. Pine SR, et al. (2003) Real-time quantitative PCR: Standardized detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Polymerase chain reaction. J Pediatr Hematol Oncol 25(2):103–108

    PubMed  Google Scholar 

  40. Sykes PJ, et al. (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13(3):444–449

    PubMed  CAS  Google Scholar 

  41. Cave H, et al. (1994) Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood 83(7):1892–1902

    PubMed  CAS  Google Scholar 

  42. Ouspenskaia MV, et al. (1995) Accurate quantitation of residual Bprecursor acute lymphoblastic leukemia by limiting dilution and a PCR-based detection system: A description of the method and the principles involved. Leukemia 9(2):321–328

    PubMed  CAS  Google Scholar 

  43. Pallisgaard N, et al. (1999) Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer 26(4):355–365

    PubMed  CAS  Google Scholar 

  44. Chen X, et al. (2001) Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay. Leukemia 15(1):166–170

    PubMed  CAS  Google Scholar 

  45. Pongers-Willemse MJ, et al. (1998) Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12(12):2006–2014

    PubMed  CAS  Google Scholar 

  46. Gabert J, et al. (2003) Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia — A Europe Against Cancer program. Leukemia 17(12): 2318–2357

    PubMed  CAS  Google Scholar 

  47. Donovan JW, et al. (2000) Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood 95(8):2651–2658

    PubMed  CAS  Google Scholar 

  48. Bruggemann M, et al. (2000) Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14(8):1419–1425

    PubMed  CAS  Google Scholar 

  49. van der Velden VH, et al. (2002) Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 16(5):928–936

    PubMed  Google Scholar 

  50. Beishuizen A, et al. (1994) Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: Implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 83(8):2238–2247

    PubMed  CAS  Google Scholar 

  51. Coustan-Smith E, et al. (2002) Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 100(7):2399–2402

    PubMed  CAS  Google Scholar 

  52. Griesinger F, et al. (1999) Leukaemia-associated immunophenotypes (LAIP) are observed in 90% of adult and childhood acute lymphoblastic leukaemia: Detection in remission marrow predicts outcome. Br J Haematol 105(1):241–255

    PubMed  CAS  Google Scholar 

  53. Dworzak MN, et al. (2002) Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 99(6):1952–1958

    PubMed  CAS  Google Scholar 

  54. Farahat N, et al. (1998) Detection of minimal residual disease in Blineage acute lymphoblastic leukaemia by quantitative flow cytometry. Br J Haematol 101(1):158–164

    PubMed  CAS  Google Scholar 

  55. Coustan-Smith E, et al. (2000) Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 96(8):2691–2696

    PubMed  CAS  Google Scholar 

  56. Ciudad J, et al. (1998) Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 16(12):3774–3781

    PubMed  CAS  Google Scholar 

  57. Borowitz MJ, et al. (2003) Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: Relation to other risk factors. A Children’s Oncology Group study. Leukemia 17(8):1566–1572

    PubMed  CAS  Google Scholar 

  58. Dworzak MN, et al. (2000) Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: Method and significance. Leuk Lymphoma 38(3–4):295–308

    PubMed  CAS  Google Scholar 

  59. Cave H, et al. (1998) Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer — Childhood Leukemia Cooperative Group. N Engl J Med 339(9):591–598

    PubMed  CAS  Google Scholar 

  60. Roberts WM, et al. (1997) Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med 336(5):317–323

    PubMed  CAS  Google Scholar 

  61. van Dongen JJ, et al. (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352(9142):1731–1738

    PubMed  Google Scholar 

  62. Goulden NJ, et al. (1998) Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Br J Haematol 100(1):235–244

    PubMed  CAS  Google Scholar 

  63. Brisco MJ, et al. (1994) Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 343(8891):196–200

    PubMed  CAS  Google Scholar 

  64. Foroni L, et al. (1997) Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukaemia reveals differences in treatment response. Leukemia 11(10): 1732–1741

    PubMed  CAS  Google Scholar 

  65. Nyvold C, et al. (2002) Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 99(4):1253–1258

    PubMed  CAS  Google Scholar 

  66. Gameiro P, et al. (2002) Polymerase chain reaction (PCR)-and reverse transcription PCR-based minimal residual disease detection in long-term follow-up of childhood acute lymphoblastic leukaemia. Br J Haematol 119(3):685–696

    PubMed  CAS  Google Scholar 

  67. Marshall GM, et al. (2003) Importance of minimal residual disease testing during the second year of therapy for children with acute lymphoblastic leukemia. J Clin Oncol 21(4):704–709

    PubMed  Google Scholar 

  68. Brisco MJ, et al. (1997) Monitoring minimal residual disease in peripheral blood in B-lineage acute lymphoblastic leukaemia. Br J Haematol 99(2):314–319

    PubMed  CAS  Google Scholar 

  69. Yokota S, et al. (1991) Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood 77(2):331–339

    PubMed  CAS  Google Scholar 

  70. Martin H, et al. (1994) In patients with BCR-ABL-positive ALL in CR peripheral blood contains less residual disease than bone marrow: Implications for autologous BMT. Ann Hematol 68(2):85–87

    PubMed  CAS  Google Scholar 

  71. van der Velden VH, et al. (2002) Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 16(8):1432–1436

    PubMed  Google Scholar 

  72. Lal A, et al. (2001) Detection of minimal residual disease in peripheral blood prior to clinical relapse of childhood acute lymphoblastic leukaemia using PCR. Mol Cell Probes 15(2):99–103

    PubMed  CAS  Google Scholar 

  73. van Rhee F, et al. (1995) Quantification of residual disease in Philadelphia-positive acute lymphoblastic leukemia: Comparison of blood and bone marrow. Leukemia 9(2):329–335

    PubMed  Google Scholar 

  74. Mitterbauer G, et al. (1999) Quantification of minimal residual disease in patients with BCR-ABL-positive acute lymphoblastic leukaemia using quantitative competitive polymerase chain reaction. Br J Haematol 106(3):634–643

    PubMed  CAS  Google Scholar 

  75. Brisco MJ, et al. (2001) Molecular relapse can be detected in blood in a sensitive and timely fashion in B-lineage acute lymphoblastic leukemia. Leukemia 15(11):1801–1802

    PubMed  CAS  Google Scholar 

  76. Brisco J, et al. (1996) Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood 87(12):5251–5256

    PubMed  CAS  Google Scholar 

  77. Krampera M, et al. (2003) Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. Br J Haematol 120(1):74–79

    PubMed  Google Scholar 

  78. Mortuza FY, et al. (2002) Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol 20(4):1094–1104

    PubMed  Google Scholar 

  79. Nizet Y, et al. (1991) Follow-up of residual disease (MRD) in B lineage acute leukaemias using a simplified PCR strategy: Evolution of MRD rather than its detection is correlated with clinical outcome. Br J Haematol 79(2):205–210

    PubMed  CAS  Google Scholar 

  80. Sher D, et al. (2002) Clone-specific quantitative real-time PCR of IgH or TCR gene rearrangements in adult ALL following induction chemotherapy identifies patients with poor prognosis: Pilot study from the Cancer and Leukemia Group B (CALGB 20101). Blood 100:153a

    Google Scholar 

  81. Bruggemann M, et al. (2006) Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 107:1116–1123

    PubMed  Google Scholar 

  82. Biondi A, et al. (1993) Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood 82(10):2943–2947

    PubMed  CAS  Google Scholar 

  83. Ludwig WD, et al. (1998) Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: Results of the German multicenter trials GMALL 03/87 and 04/89. Blood 92(6):1898–1909

    PubMed  CAS  Google Scholar 

  84. Cimino G, et al. (2000) A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood 95(1):96–101

    PubMed  CAS  Google Scholar 

  85. Janssen JW, et al. (1994) Pre-pre-B acute lymphoblastic leukemia: High frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood 84(11):3835–3842

    PubMed  CAS  Google Scholar 

  86. Cimino G, et al. (1996) Clinical relevance of residual disease monitoring by polymerase chain reaction in patients with ALL-1/AF-4 positive-acute lymphoblastic leukaemia. Br J Haematol 92(3):659–664

    PubMed  CAS  Google Scholar 

  87. Preudhomme C, et al. (1997) Good correlation between RT-PCR analysis and relapse in Philadelphia (Ph1)-positive acute lymphoblastic leukemia (ALL). Leukemia 11(2):294–298

    PubMed  CAS  Google Scholar 

  88. Mitterbauer G, et al. (1995) PCR-monitoring of minimal residual leukaemia after conventional chemotherapy and bone marrow transplantation in BCR-ABL-positive acute lymphoblastic leukaemia. Br J Haematol 89(4):937–941

    Article  PubMed  CAS  Google Scholar 

  89. Sierra J, et al. (1997) Marrow transplants from unrelated donors for treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 90(4):1410–1414

    PubMed  CAS  Google Scholar 

  90. Radich J, et al. (1997) Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 89(7):2602–2609

    PubMed  CAS  Google Scholar 

  91. Miyamura K, et al. (1992) Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: Possible eradication of minimal residual disease by marrow transplantation. Blood 79(5):1366–1370

    PubMed  CAS  Google Scholar 

  92. Gehly GB, et al. (1991) Chimeric BCR-abl messenger RNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 78(2):458–465

    PubMed  CAS  Google Scholar 

  93. Radich J, Ladne P, Gooley T (1995) Polymerase chain reaction-based detection of minimal residual disease in acute lymphoblastic leukemia predicts relapse after allogeneic BMT. Biol Blood Marrow Transplant 1(1):24–31

    PubMed  CAS  Google Scholar 

  94. Dombret H, et al. (2002) Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia — Results of the prospective multicenter LALA-94 trial. Blood 100(7):2357–2366

    PubMed  CAS  Google Scholar 

  95. Towatari M, et al. (2004) Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Blood 104(12):3507–3512

    PubMed  CAS  Google Scholar 

  96. Thomas DA, et al. (2004) Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood 103(12):4396–4407

    PubMed  CAS  Google Scholar 

  97. Lee S, et al. (2002) The impact of first-line imatinib interim therapy on the outcome of allogeneic stem cell transplantation in adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 105(9):3449–3457

    Google Scholar 

  98. Bader P, et al. (2002) Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 16(9): 1668–1672

    PubMed  CAS  Google Scholar 

  99. Knechtli CJ, et al. (1998) Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 92(11):4072–4079

    PubMed  CAS  Google Scholar 

  100. Uzunel M, et al. (2001) The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood 98(6):1982–1984

    PubMed  CAS  Google Scholar 

  101. Uckun FM, et al. (1993) Pretransplantation burden of leukemic progenitor cells as a predictor of relapse after bone marrow transplantation for acute lymphoblastic leukemia. N Engl J Med 329(18):1296–1301

    PubMed  CAS  Google Scholar 

  102. van der Velden VH, et al. (2001) Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 15(9):1485–1487

    PubMed  Google Scholar 

  103. Vervoordeldonk SF, et al. (1997) PCR-positivity in harvested bone marrow predicts relapse after transplantation with autologous purged bone marrow in children in second remission of precursor B-cell acute leukaemia. Br J Haematol 96(2):395–402

    PubMed  CAS  Google Scholar 

  104. Goulden N, Steward C (2002) Clinical relevance of MRD in children undergoing allogeneic stem cell transplantation for ALL. Best Pract Res Clin Haematol 15(1):59–70

    PubMed  Google Scholar 

  105. Sanchez J, et al. (2002) Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br J Haematol 116(3): 686–694

    PubMed  Google Scholar 

  106. Knechtli CJ, et al. (1998) Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol 102(3):860–871

    PubMed  CAS  Google Scholar 

  107. Uzunel M, et al. (2003) Minimal residual disease detection after allogeneic stem cell transplantation is correlated to relapse in patients with acute lymphoblastic leukaemia. Br J Haematol 122(5):788–794

    PubMed  Google Scholar 

  108. Panzer-Grumayer ER, et al. (2000) Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 95(3):790–794

    PubMed  CAS  Google Scholar 

  109. Ciudad J, et al. (1999) Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL. Br J Haematol 104(4):695–705

    PubMed  CAS  Google Scholar 

  110. Coustan-Smith E, et al. (2002) Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 100(1):52–58

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Abutalib, S., Stock, W. (2008). Minimal Residual Disease Studies in Acute Lymphoblastic Leukemia. In: Acute Leukemias. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72304-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72304-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72302-8

  • Online ISBN: 978-3-540-72304-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics