Advertisement

Curve Parametrization over Optimal Field Extensions Exploiting the Newton Polygon

Chapter
  • 1.1k Downloads

This paper describes an algorithm for rational parametrization of plane algebraic curves of genus zero. It exploits the shape of the Newton polygon. The computed parametrization has coefficients in an optimal field extension, which is of degree one or two.

Keywords

Curve Parametrization Prime Divisor Algebraic Curf Isosceles Triangle Newton Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tobias Beck and Josef Schicho. Parametrization of Algebraic Curves Defined by Sparse Equations. AAECC, 2006. Accepted for publication. Preprint available as RICAM Report 2005-08 at http://www.ricam.oeaw.ac.at/publications/reports.
  2. 2.
    Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    David Cox. What is a toric variety? In Topics in Algebraic Geometry and Geometric Modeling, volume 334 of Contemporary Mathematics, pages 203-223. American Mathe-matical Society, Providence, Rhode Island, 2003. Workshop on Algebraic Geometry and Geometric Modeling (Vilnius, 2002).Google Scholar
  4. 4.
    David A. Cox. Toric varieties and toric resolutions. In Resolution of singularities (Ober-gurgl, 1997), volume 181 of Progr. Math., pages 259-284. Birkh äuser, Basel, 2000.Google Scholar
  5. 5.
    William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.Google Scholar
  6. 6.
    G.-M. Greuel, C. Lossen, and M. Schulze. Three algorithms in algebraic geometry, coding theory and singularity theory. In Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), volume 36 of NATO Sci. Ser. II Math. Phys. Chem., pages 161-194. Kluwer Acad. Publ., Dordrecht, 2001.Google Scholar
  7. 7.
    Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative algebra. Springer-Verlag, Berlin, 2002. With contributions by Olaf Bachmann, Christoph Lossen and Hans Sch önemann, With 1 CD-ROM (Windows, Macintosh, and UNIX).zbMATHGoogle Scholar
  8. 8.
    Gaétan Haché and Dominique Le Brigand. Effective construction of algebraic geometry codes. IEEE Trans. Inform. Theory, 41(6, part 1):1615-1628, 1995. Special issue on algebraic geometry codes.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.zbMATHGoogle Scholar
  10. 10.
    F. Hess. Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symbolic Comput., 33(4):425-445, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Erik Hillgarter and Franz Winkler. Points on algebraic curves and the parametrization problem. In Wang, Dongming (ed.), Automated deduction in geometry. International workshop, Toulouse, France, September 27-29, 1996. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1360, 189-207 . 1998.Google Scholar
  12. 12.
    Nathan Jacobson. Finite-dimensional division algebras over fields. Springer-Verlag, Berlin, 1996.zbMATHCrossRefGoogle Scholar
  13. 13.
    Josef Schicho. On the choice of pencils in the parametrization of curves. J. Symbolic Comput., 14(6):557-576, 1992.zbMATHMathSciNetGoogle Scholar
  14. 14.
    J. Rafael Sendra and Franz Winkler. Symbolic parametrization of curves. J. Symbolic Comput., 12(6):607-631, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    J. Rafael Sendra and Franz Winkler. Parametrization of algebraic curves over optimal field extensions. J. Symbolic Comput., 23(2-3):191-207, 1997. Parametric algebraic curves and applications (Albuquerque, NM, 1995).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Igor R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, 1994. Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.Google Scholar
  17. 17.
    Denis Simon. Solving quadratic equations using reduced unimodular quadratic forms. Math. Comp., 74(251):1531-1543 (electronic), 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mark van Hoeij. Rational parametrizations of algebraic curves using a canonical divisor. J. Symbolic Comput., 23(2-3):209-227, 1997. Parametric algebraic curves and applications (Albuquerque, NM, 1995).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Oscar Zariski and Pierre Samuel. Commutative algebra. Vol. II. Springer-Verlag, New York, 1975. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 29.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

There are no affiliations available

Personalised recommendations