Skip to main content

A monoid hypersurface is an irreducible hypersurface of degree d which has a singular point of multiplicity d‒1. Any monoid hypersurface admits a rational parameterization, hence is of potential interest in computer aided geometric design. We study properties of monoids in general and of monoid surfaces in particular. The main results include a description of the possible real forms of the singularities on a monoid surface other than the (d ‒ 1)-uple point. These results are applied to the classification of singularities on quartic monoid surfaces, complementing earlier work on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnol’d. Normal forms of functions in neighbourhoods of degenerate critical points. Russian Math Surveys, 29ii:10–50, 1974.

    Article  Google Scholar 

  2. V. I. Arnol’d. Critical points of smooth functions and their normal forms. Russian Math Surveys, 30v:1–75, 1975.

    Article  Google Scholar 

  3. V. I. Arnol’d, S. M. Guseǐn-Zade, and A. N. Varchenko. Singularities of differentiable maps. Vol. I, volume 82 of Monographs in Mathematics. The classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark Reynolds. Birkh äuser Boston Inc., Boston, MA, 1985.

    Google Scholar 

  4. J. W. Bruce and C. T. C. Wall. On the classification of cubic surfaces. J. London Math. Soc. (2), 19(2):245–256, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Endraß et al. SURF 1.0.4. 2003. A Computer Software for Visualising Real Algebraic Geometry, http://surf.sourceforge.net.

  6. G.-M. Greuel, G. Pfister, and H. Schönemann.  SINGULAR 3.01. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005). http://www.singular.uni-kl.de.

  7. C. M. Jessop. Quartic surfaces with singular points. Cambridge University Press, 1916.

    Google Scholar 

  8. H. Knörrer and T. Miller. Topologische Typen reeller kubischer Flächen.  Math. Z., 195(1):51–67, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Labs and D. van Straten. The Cubic Surface Homepage. 2001. http://Cubics.AlgebraicSurface.net.

  10. H. B. Laufer. On minimally elliptic singularities. Amer. J. Math., 99(6):1257–1295, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Moura.  Local intersections of plane algebraic curves.  Proc. Amer. Math. Soc., 132(3):687–690 (electronic), 2004.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Pérez-Díaz, J. Sendra, and J. Rafael Sendra. Parametrization of approximate algebraic curves by lines. Theoret. Comput. Sci., 315(2-3):627–650, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Pérez-Díaz, J. Sendra, and J. R. Sendra. Parametrization of approximate algebraic surfaces by lines. Comput. Aided Geom. Design, 22(2):147–181, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Piene. Polar classes of singular varieties. Ann. Sci. École Norm. Sup. (4), 11(2):247–276,1978.

    MATH  MathSciNet  Google Scholar 

  15. K. Rohn.  Ueber die Fl ächen vierter Ordnung mit dreifachem Punkte.  Math. Ann., 24(1):55–151, 1884.

    Article  MathSciNet  Google Scholar 

  16. L. Schläfli. On the distribution of surfaces of the third order into species. Philos. Trans. Royal Soc., CLIII:193–241, 1863.

    Article  Google Scholar 

  17. T. W. Sederberg, J. Zheng, K. Klimaszewski, and T. Dokken. Approximate implicitization using monoid curves and surfaces. Graphical Models and Image Processing, 61(4):177-198,1999.

    Article  Google Scholar 

  18. B. Segre. The Non-singular Cubic Surfaces. Oxford University Press, Oxford, 1942.

    Google Scholar 

  19. T. Takahashi, K. Watanabe, and T. Higuchi. On the classification of quartic surfaces with triple point. I, II. Sci. Rep. Yokohama Nat. Univ. Sect. I, (29):47-70, 71–94, 1982.

    MathSciNet  Google Scholar 

  20. B. Teissier. Cyclesévanescents, sections planes et conditions de Whitney. In Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pages 285-362. Astérisque, Nos. 7 et 8. Soc. Math. France, Paris, 1973.

    Google Scholar 

  21. Y. Umezu. On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math., 4(2):343–354, 1981.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johansen, P.H., Løberg, M., Piene, R. (2008). Monoid Hypersurfaces. In: Jüttler, B., Piene, R. (eds) Geometric Modeling and Algebraic Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72185-7_4

Download citation

Publish with us

Policies and ethics