Real Line Arrangements and Surfaces with Many Real Nodes



Betti Number Plane Curve Projective Surface Line Arrangement Real Algebraic Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Barth. Two Projective Surfaces with Many Nodes, Admitting the Symmetry of the Icosahedron. J. Algebraic Geom., 5(1):173–186, 1996.zbMATHMathSciNetGoogle Scholar
  2. 2.
    F. Bihan. Asymptotic behaviour of Betti numbers of real algebraic surfaces. Comment. Math. Helv., 78:227–244, 2003.zbMATHMathSciNetGoogle Scholar
  3. 3.
    S. Breske. Konstruktion von Flächen mit vielen reellen Singularitäten mit Hilfe von Faltungspolynomen. Diploma Thesis. University of Mainz, 2005. Available from [14].Google Scholar
  4. 4.
    S.V. Chmutov. Spectrum and equivariant deformations of critical points. Uspekhi mat. nauk, 39(4):113–114, 1984. In Russian.Google Scholar
  5. 5.
    S.V. Chmutov. Examples of Projective Surfaces with Many Singularities. J. Algebraic Geom., 1(2):191–196, 1992.zbMATHMathSciNetGoogle Scholar
  6. 6.
    S.V. Chmutov. Extremal distributions of critical points and critical values. In D. T. Lê , K. Saito, and B. Teissier, editors, Singularity Theory, pages 192-205, 1995.Google Scholar
  7. 7.
    A. Degtyarev and V. Kharlamov. Topological properties of real algebraic varieties: Du côté de chez Rokhlin. Russ. Math. Surv., 55(4):735–814, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Endraß. Flächen mit vielen Doppelpunkten. DMV-Mitteilungen, 4(4):17–20, 1995.Google Scholar
  9. 9.
    S. Endraß. A Projective Surface of Degree Eight with 168 Nodes. J. Algebraic Geom., 6(2):325–334, 1997.zbMATHMathSciNetGoogle Scholar
  10. 10.
    J.E. Goodman and J. O’Rourke, editors. Handbook of Computational Geometry, chapter 5: Pseudoline Arrangements. Chapman & Hall/CRC, 2nd edition, 2004.Google Scholar
  11. 11.
    H. Harborth. Two-Colorings of Simple Arrangements. In Finite and Infinite Sets, number 37 in Colloquia Mathematica Societatis János Bolyai, pages 371-378. North-Holland, 1981.Google Scholar
  12. 12.
    D.B. Jaffe and D. Ruberman. A Sextic Surface cannot have 66 Nodes. J. Algebraic Geom., 6(1):151–168, 1997.zbMATHMathSciNetGoogle Scholar
  13. 13.
    V. Kharlamov. Overview of topological properties of real algebraic surfaces. math.AG/0502127, 2005.Google Scholar
  14. 14.
    O. Labs. Algebraic Surface Homepage. Information, Images and Tools on Algebraic Surfaces., 2003.
  15. 15.
    O. Labs. A Septic with 99 Real Nodes. Preprint, math.AG/0409348, to appear in: Rend. Sem. Mat. Univ. Pad., 2004.Google Scholar
  16. 16.
    O. Labs. Dessins D’Enfants and Hypersurfaces in P3with many Aj -Singularities. Preprint, math.AG/0505022, 2005.Google Scholar
  17. 17.
    Y. Miyaoka. The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants. Math. Ann., 268:159–171, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Ortiz-Rodriguez. Quelques aspects sur la géométrie des surfaces algébriques réelles. Bull. Sci. Math., 127:149–177, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Sarti. Pencils of symmetric surfaces in P3 . J. Algebra, 246(1):429–452, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A.N. Varchenko. On the Semicontinuity of the Spectrum and an Upper Bound for the Number of Singular Points of a Projective Hypersurface. J. Soviet Math., 270:735–739, 1983.Google Scholar
  21. 21.
    W.D. Withers. Folding Polynomials and Their Dynamics. Amer. Math. Monthly, 95:399–413,1988.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institut für MathematikJohannes Gutenberg UniversitätMainzGermany
  2. 2.Institut für MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations