Skip to main content

Dendritic Cell Subsets and Toll-Like Receptors

  • Chapter
Toll-Like Receptors (TLRs) and Innate Immunity

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 183))

Toll-like receptors exist as highly conserved pathogen sensors throughout the animal kingdom and they represent a key family of molecules bridging the ancient innate and adaptive immune systems. The first molecules of adaptive immunity appeared in the cartilaginous fishes and, with these, major histocompatibility proteins and cells expressing these molecules, and thus, by definition, the advent of antigen-presenting cells and the “professional” antigen-presenting cells, the dendritic cells. Dendritic cells themselves are highly specialized subsets of cells with the major roles of antigen presentation and stimulation of lymphocytes. The dendritic cell functions of inducing immunity are regulated by their own activation status, which is governed by their encounter with pathogen-associated molecular patterns that signal through pattern recognition receptors, including Toll-like receptors, expressed at the surface and within the cytoplasm and endosomal membranes of dendritic cells. Thus although dendritic cells play a crucial role in the induction of adaptive immunity, the adaptive response is itself initiated at the level of ancient receptors of the innate immune system. A further degree in the complexity of dendritic cell activation is established by the fact that not all dendritic cells are equal. Dendritic cells exist as multiple subsets that vary in location, function, and phenotype. Distinct dendritic cell subsets display great variation in the type of Toll-like receptors expressed and consequently variation in the type of pathogens sensed and the subsequent type of immune responses initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Wang Z, de CA, Thomson AW (2005a) Plasmacytoid dendritic cell precursors induce allogeneic T-cell hyporesponsiveness and prolong heart graft survival. Am J Transplant 5: 1808-1819

    CAS  Google Scholar 

  • Abe T, Hemmi H, Miyamoto H, Moriishi K, Tamura S, Takaku H, Akira S, Matsuura Y (2005b) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J Virol 79: 2847-2858

    CAS  Google Scholar 

  • Abujamra AL, Spanjaard RA, Akinsheye I, Zhao X, Faller DV, Ghosh SK (2006) Leukemia virus long terminal repeat activates NFkappaB pathway by a TLR3-dependent mechanism. Virology 345: 390-403

    CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738

    CAS  PubMed  Google Scholar 

  • Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, Carbone FR (2003) Epidermal viral immunity induced by CD8{alpha}+ dendritic cells but not by Langerhans cells. Science 301: 1925-1928

    CAS  PubMed  Google Scholar 

  • Applequist SE, Wallin RP, Ljunggren HG (2002) Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int Immunol 14: 1065-1074

    CAS  PubMed  Google Scholar 

  • Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175: 4189-4193

    CAS  PubMed  Google Scholar 

  • Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G (2003) Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171: 6466-6477

    CAS  PubMed  Google Scholar 

  • Barchet W, Blasius A, Cella M, Colonna M (2005a) Plasmacytoid dendritic cells: In search of their niche in immune responses. Immunol Res 32: 75-83

    CAS  Google Scholar 

  • Barchet W, Cella M, Colonna M (2005b) Plasmacytoid dendritic cells—-Virus experts of innate immunity. Semin Immunol 17: 253-261

    CAS  Google Scholar 

  • Basner-Tschakarjan E, Gaffal E, O’Keeffe M, Tormo D, Limmer A, Wagner H, Hochrein H, Tuting T (2006) Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-alpha production. J Gene Med 8: 1300-1306

    CAS  PubMed  Google Scholar 

  • Beignon AS, McKenna K, Skoberne M, Manches O, Dasilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115: 3265-3275

    CAS  PubMed  Google Scholar 

  • Belz GT, Shortman K, Bevan MJ, Heath WR (2005) CD8{alpha}+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J Immunol 175: 196-200

    CAS  PubMed  Google Scholar 

  • Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, Carbone FR, Heath WR (2004a) Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 172: 1996-2000

    CAS  Google Scholar 

  • Belz GT, Smith CM, Kleinert L, Reading P, Brooks A, Shortman K, Carbone FR, Heath WR (2004b) Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci USA 101: 8670-8675

    CAS  Google Scholar 

  • Belz GT, Vremec D, Febbraio M, Corcoran L, Shortman K, Carbone FR, Heath WR (2002) CD36 is differentially expressed by CD8+ splenic dendritic cells but is not required for crosspresentation in vivo. J Immunol 168: 6066-6070

    CAS  PubMed  Google Scholar 

  • Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: The Toll-like receptors and their transducers. J Leukoc Biol 74: 479-485

    CAS  PubMed  Google Scholar 

  • Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wildtype measles virus activates Toll-like receptor 2 signaling. J Virol 76: 8729-8736

    CAS  PubMed  Google Scholar 

  • Blom B, Ho S, Antonenko S, Liu YJ (2000) Generation of interferon alpha-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem cells. J Exp Med 192: 1785-1796

    CAS  PubMed  Google Scholar 

  • Boehme KW, Guerrero M, Compton T (2006) Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol 177: 7094-7102

    CAS  PubMed  Google Scholar 

  • Brasel K, De Smedt T, Smith JL, Maliszewski CR (2000) Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 96: 3029-3039

    CAS  PubMed  Google Scholar 

  • Brawand P, Fitzpatrick DR, Greenfield BW, Brasel K, Maliszewski CR, De Smedt T (2002) Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J Immunol 169: 6711-6719

    CAS  PubMed  Google Scholar 

  • Burzyn D, Rassa JC, Kim D, Nepomnaschy I, Ross SR, Piazzon I (2004) Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J Virol 78: 576-584

    CAS  PubMed  Google Scholar 

  • Chung Y, Chang JH, Kweon MN, Rennert PD, Kang CY (2005) CD8alpha-11b+ dendritic cells but not CD8alpha+ dendritic cells mediate cross-tolerance toward intestinal antigens. Blood 106: 201-206

    CAS  PubMed  Google Scholar 

  • Ciavarra RP, Stephens A, Nagy S, Sekellick M, Steel C (2006) Evaluation of immunological paradigms in a virus model: Are dendritic cells critical for antiviral immunity and viral clearance? J Immunol 177: 492-500

    CAS  PubMed  Google Scholar 

  • Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77: 4588-4596

    CAS  PubMed  Google Scholar 

  • Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 207: 145-157

    CAS  PubMed  Google Scholar 

  • de Heer HJ, Hammad H, Soullie T, Hijdra D, Vos N, Willart MA, Hoogsteden HC, Lambrecht BN (2004) Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200: 89-98

    CAS  PubMed  Google Scholar 

  • Deane JA, Bolland S (2006) Nucleic acid-sensing TLRs as modifiers of autoimmunity. J Immunol 177: 6573-6578

    CAS  PubMed  Google Scholar 

  • Delale T, Paquin A, Asselin-Paturel C, Dalod M, Brizard G, Bates EE, Kastner P, Chan S, Akira S, Vicari A, Biron CA, Trinchieri G, Briere F (2005) MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol 175: 6723-6732

    CAS  PubMed  Google Scholar 

  • Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA (2005) Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 32: 177-184

    CAS  PubMed  Google Scholar 

  • den Haan JM, Bevan MJ (2002) Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(−) dendritic cells in vivo. J Exp Med 196: 817-827

    CAS  PubMed  Google Scholar 

  • den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192: 1685-1696

    CAS  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7mediated recognition of single-stranded RNA. Science 303: 1529-1531

    CAS  PubMed  Google Scholar 

  • Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MB (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322: 231-238

    CAS  PubMed  Google Scholar 

  • Edwards AD, Chaussabel D, Tomlinson S, Schulz O, Sher A, Reis e Sousa C (2003a) Relationships among murine CD11c(high) dendritic cell subsets as revealed by baseline gene expression patterns. J Immunol 171: 47-60

    CAS  Google Scholar 

  • Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C (2003b) Toll-like receptor expression in murine DC subsets: Lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 33: 827-833

    CAS  Google Scholar 

  • Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O, de SaintVis B, Caux C, Zutter-Dambuyant C, Lebecque S, Valladeau J (2006) Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 177: 7959-7967

    CAS  PubMed  Google Scholar 

  • Flores-Langarica A, Meza-Perez S, Calderon-Amador J, Estrada-Garcia T, Macpherson G, Lebecque S, Saeland S, Steinman RM, Flores-Romo L (2005) Network of dendritic cells within the muscular layer of the mouse intestine. Proc Natl Acad Sci USA 102: 19039-19044

    CAS  PubMed  Google Scholar 

  • Fuchsberger M, Hochrein H, O’Keeffe M (2005) Activation of plasmacytoid dendritic cells. Immunol Cell Biol 83: 571-577

    CAS  PubMed  Google Scholar 

  • Fugier-Vivier IJ, Rezzoug F, Huang Y, Graul-Layman AJ, Schanie CL, Xu H, Chilton PM, Ildstad ST (2005) Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment. J Exp Med 201: 373-383

    CAS  PubMed  Google Scholar 

  • Galibert L, Diemer GS, Liu Z, Johnson RS, Smith JL, Walzer T, Comeau MR, Rauch CT, Wolfson MF, Sorensen RA, Van der Vuurst de Vries AR, Branstetter DG, Koelling RM, Scholler J, Fanslow WC, Baum PR, Derry JM, Yan W (2005) Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J Biol Chem 280: 21955-21964

    CAS  PubMed  Google Scholar 

  • Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187: 961-966

    CAS  PubMed  Google Scholar 

  • Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195: 953-958

    CAS  PubMed  Google Scholar 

  • Groothuis TAM, Neefjes J (2005) The many roads to cross-presentation. J Exp Med 202: 1313-1318

    CAS  PubMed  Google Scholar 

  • Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M (2005) Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280: 5571-5580

    CAS  PubMed  Google Scholar 

  • Guzylack-Piriou L, Balmelli C, McCullough KC, Summerfield A (2004) Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferonalpha, tumour necrosis factor-alpha and interleukin-12. Immunology 112: 28-37

    CAS  PubMed  Google Scholar 

  • Hammad H, de Vries VC, Maldonado-Lopez R, Moser M, Maliszewski C, Hoogsteden HC, Lambrecht BN (2004) Differential capacity of CD8+ alpha or CD8− alpha dendritic cell subsets to prime for eosinophilic airway inflammation in the T-helper type 2-prone milieu of the lung. Clin Exp Allergy 34: 1834-1840

    CAS  PubMed  Google Scholar 

  • Hartmann G, Weiner GJ, Krieg AM (1999) CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 96: 9305-9310

    CAS  PubMed  Google Scholar 

  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA (2001) Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75: 10730-10737

    CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526-1529

    CAS  PubMed  Google Scholar 

  • Henri S, Vremec D, Kamath A, Waithman J, Williams S, Benoist C, Burnham K, Saeland S, Handman E, Shortman K (2001) The dendritic cell populations of mouse lymph nodes. J Immunol 167: 741-748

    CAS  PubMed  Google Scholar 

  • Hochrein H, O’Keeffe M, Wagner H (2002) Human and mouse plasmacytoid dendritic cells. Hum Immunol 63: 1103-1110

    CAS  PubMed  Google Scholar 

  • Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA 101: 11416-11421

    CAS  PubMed  Google Scholar 

  • Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keeffe M (2001) Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 166: 5448-5455

    CAS  PubMed  Google Scholar 

  • Hoene V, Peiser M, Wanner R (2006) Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligonucleotide D19. J Leukoc Biol 80: 1328-1336

    CAS  PubMed  Google Scholar 

  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168: 4531-4537

    CAS  PubMed  Google Scholar 

  • Hubert FX, Voisine C, Louvet C, Heslan JM, Ouabed A, Heslan M, Josien R (2006) Differential pattern recognition receptor expression but stereotyped responsiveness in rat spleen dendritic cell subsets. J Immunol 177: 1007-1016

    CAS  PubMed  Google Scholar 

  • Hubert FX, Voisine C, Louvet C, Heslan M, Josien R (2004) Rat plasmacytoid dendritic cells are an abundant subset of MHC class II+ CD4+CD11b−. J Immunol 172: 7485-7494

    CAS  PubMed  Google Scholar 

  • Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, Brennan PJ, Belisle JT, Blauvelt A, Porcelli SA, Modlin RL (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113: 701-708

    CAS  PubMed  Google Scholar 

  • Iacobelli-Martinez M, Nemerow GR (2007) Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J Virol 81: 1305-1312

    CAS  PubMed  Google Scholar 

  • Ichikawa E, Hida S, Omatsu Y, Shimoyama S, Takahara K, Miyagawa S, Inaba K, Taki S (2004) Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2. PNAS 101: 3909-3914

    CAS  PubMed  Google Scholar 

  • Iezzi G, Frohlich A, Ernst B, Ampenberger F, Saeland S, Glaichenhaus N, Kopf M (2006) Lymph Node Resident Rather Than Skin-Derived Dendritic Cells Initiate Specific T Cell Responses after Leishmania major Infection. J Immunol 177: 1250-1256

    CAS  PubMed  Google Scholar 

  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693-1702

    CAS  PubMed  Google Scholar 

  • Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, Ozaki Y, Tomizawa H, Akira S, Fukuhara S (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195: 1507-1512

    CAS  PubMed  Google Scholar 

  • Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, Seoh JY, Lipp M, Kiyono H, Miyasaka M (2006) CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 176: 803-810

    CAS  PubMed  Google Scholar 

  • Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31: 3388-3393

    CAS  PubMed  Google Scholar 

  • Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17: 211-220

    CAS  PubMed  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 194: 863-869

    CAS  PubMed  Google Scholar 

  • Kamath AT, Henri S, Battye F, Tough DF, Shortman K (2002) Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100: 1734-1741

    CAS  PubMed  Google Scholar 

  • Kamath AT, Pooley J, O’Keeffe MA, Vremec D, Zhan Y, Lew AM, D’Amico A, Wu L, Tough DF, Shortman K (2000) The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 165: 6762-6770

    CAS  PubMed  Google Scholar 

  • Kamogawa-Schifter Y, Ohkawa J, Namiki S, Arai N, Arai K, Liu Y (2005) Ly49Q defines 2 pDC subsets in mice. Blood 105: 2787-2792

    CAS  PubMed  Google Scholar 

  • Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22: 643-654

    CAS  PubMed  Google Scholar 

  • Kissenpfennig A, Malissen B (2006) Langerhans cells—Revisiting the paradigm using genetically engineered mice. Trends Immunol 27: 132-139

    CAS  PubMed  Google Scholar 

  • Kokkinopoulos I, Jordan WJ, Ritter MA (2005) Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol Immunol 42: 957-968

    CAS  PubMed  Google Scholar 

  • Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM, Colonna M (2004a) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 107-119

    CAS  Google Scholar 

  • Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004b) Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103: 1433-1437

    CAS  Google Scholar 

  • Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31: 3026-3037

    CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1: 398-401

    CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Sandor F, Ortiz Y, Bowen GN, Counter SL, Wang TC, Finberg RW (2004) Use of murine embryonic fibroblasts to define Toll-like receptor activation and specificity. J Endotoxin Res 10: 419-424

    CAS  PubMed  Google Scholar 

  • Lahoud MH, Proietto AI, Gartlan KH, Kitsoulis S, Curtis J, Wettenhall J, Sofi M, Daunt C, O’Keeffe M, Caminschi I, Satterley K, Rizzitelli A, Schnorrer P, Hinohara A, Yamaguchi Y, Wu L, Smyth G, Handman E, Shortman K, Wright MD (2006) Signal regulatory protein molecules are differentially expressed by CD8- dendritic cells. J Immunol 177: 372-382

    CAS  PubMed  Google Scholar 

  • Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Ait-Yahia S, Vicari A, Kaiserlian D, Dubois B (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24: 191-201

    CAS  PubMed  Google Scholar 

  • Lian ZX, Okada T, He XS, Kita H, Liu YJ, Ansari AA, Kikuchi K, Ikehara S, Gershwin ME (2003) Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J Immunol 170: 2323-2330

    CAS  PubMed  Google Scholar 

  • Lindstedt M, Lundberg K, Borrebaeck CA (2005) Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J Immunol 175: 4839-4846

    CAS  PubMed  Google Scholar 

  • Liu CH, Fan YT, Dias A, Esper L, Corn RA, Bafica A, Machado FS, Aliberti J (2006a) Cutting edge: Dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. J Immunol 177: 31-35

    CAS  Google Scholar 

  • Liu L, Fuhlbrigge RC, Karibian K, Tian T, Kupper TS (2006b) Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25: 511-520

    CAS  Google Scholar 

  • Liu YJ (2005) IPC: Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23: 275-306

    CAS  PubMed  Google Scholar 

  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198: 513-520

    CAS  PubMed  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101: 5598-5603

    CAS  PubMed  Google Scholar 

  • MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100: 4512-4520

    CAS  PubMed  Google Scholar 

  • Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M (1999) CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189: 587-592

    CAS  PubMed  Google Scholar 

  • Masten BJ, Olson GK, Tarleton CA, Rund C, Schuyler M, Mehran R, Archibeque T, Lipscomb MF (2006) Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol 177: 7784-7793

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171: 3154-3162

    CAS  PubMed  Google Scholar 

  • Maurer T, Heit A, Hochrein H, Ampenberger F, O’Keeffe M, Bauer S, Lipford GB, Vabulas RM, Wagner H (2002) CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur J Immunol 32: 2356-2364

    CAS  PubMed  Google Scholar 

  • Means TK, Hayashi F, Smith KD, Aderem A, Luster AD (2003) The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170: 5165-5175

    CAS  PubMed  Google Scholar 

  • Melchjorsen J, Jensen SB, Malmgaard L, Rasmussen SB, Weber F, Bowie AG, Matikainen S, Paludan SR (2005) Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J Virol 79: 12944-12951

    CAS  PubMed  Google Scholar 

  • Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164: 5998-6004

    CAS  PubMed  Google Scholar 

  • Naik SH, Corcoran LM, Wu L (2005a) Development of murine plasmacytoid dendritic cell subsets. Immunol Cell Biol 83: 563-570

    CAS  Google Scholar 

  • Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M, Lahoud MH, O’Keeffe M, Shao QX, Chen WF, Villadangos JA, Shortman K, Wu L (2005b) Cutting edge: generation of splenic CD8+ and CD8− dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 174: 6592-6597

    CAS  Google Scholar 

  • O’Keeffe M, Grumont RJ, Hochrein H, Fuchsberger M, Gugasyan R, Vremec D, Shortman K, Gerondakis S (2005) Distinct roles for the NF-kappaB1 and c-Rel transcription factors in the differentiation and survival of plasmacytoid and conventional dendritic cells activated by TLR9 signals. Blood 106: 3457-3464

    PubMed  Google Scholar 

  • O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, Wu L, Lahoud MH, Henri S, Scott B, Hertzog P, Tatarczuch L, Shortman K (2002a) Mouse plasmacytoid cells: Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196: 1307-1319

    Google Scholar 

  • O’Keeffe M, Hochrein H, Vremec D, Pooley J, Evans R, Woulfe S, Shortman K (2002b) Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood 99: 2122-2130

    Google Scholar 

  • O’Keeffe M, Hochrein H, Vremec D, Scott B, Hertzog P, Tatarczuch L, Shortman K (2003) Dendritic cell precursor populations of mouse blood: Identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101: 1453-1459

    PubMed  Google Scholar 

  • Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, Angeli V, Li Y, Boros P, Ding Y, Jessberger R, Trinchieri G, Lira SA, Randolph GJ, Bromberg JS (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7: 652-662

    CAS  PubMed  Google Scholar 

  • Okada T, Lian ZX, Naiki M, Ansari AA, Ikehara S, Gershwin ME (2003) Murine thymic plasmacytoid dendritic cells. Eur J Immunol 33: 1012-1019

    CAS  PubMed  Google Scholar 

  • Omatsu Y, Iyoda T, Kimura Y, Maki A, Ishimori M, Toyama-Sorimachi N, Inaba K (2005) Development of murine plasmacytoid dendritic cells defined by increased expression of an inhibitory NK receptor, Ly49Q. J Immunol 174: 6657-6662

    CAS  Google Scholar 

  • Ortner U, Inaba K, Koch F, Heine M, Miwa M, Schuler G, Romani N (1996) An improved isolation method for murine migratory cutaneous dendritic cells. J Immunol Methods 193: 71-79

    CAS  PubMed  Google Scholar 

  • Pasare C, Medzhitov R (2005) Toll-like receptors: Linking innate and adaptive immunity. Adv Exp Med Biol 560: 11-18

    CAS  PubMed  Google Scholar 

  • Pooley JL, Heath WR, Shortman K (2001) Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 166: 5327-5330

    CAS  PubMed  Google Scholar 

  • Proietto AI, O’Keeffe M, Gartlan K, Wright MD, Shortman K, Wu L, Lahoud MH (2004) Differential production of inflammatory chemokines by murine dendritic cell subsets. Immunobiology 209: 163-172

    CAS  PubMed  Google Scholar 

  • Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR (2002) Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci USA 99(2): 2281-2286

    CAS  PubMed  Google Scholar 

  • Renn CN, Sanchez DJ, Ochoa MT, Legaspi AJ, Oh CK, Liu PT, Krutzik SR, Sieling PA, Cheng G, Modlin RL (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177(2): 298-305

    CAS  PubMed  Google Scholar 

  • Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN (2006) The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 176: 7636-7644

    CAS  PubMed  Google Scholar 

  • Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162: 2472-2475

    CAS  PubMed  Google Scholar 

  • Salazar-Gonzalez RM, Niess JH, Zammit DJ, Ravindran R, Srinivasan A, Maxwell JR, Stoklasek T, Yadav R, Williams IR, Gu X, McCormick BA, Pazos MA, Vella AT, Lefrancois L, Reinecker HC, McSorley SJ (2006) CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer’s patches. Immunity 24: 623-632

    CAS  PubMed  Google Scholar 

  • Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179: 1109-1118

    CAS  PubMed  Google Scholar 

  • Sato A, Linehan MM, Iwasaki A (2006) Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci USA 103: 17343-17348

    CAS  PubMed  Google Scholar 

  • Scheicher C, Mehlig M, Zecher R, Reske K (1992) Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colonystimulating factor. J Immunol Methods 154: 253-264

    CAS  PubMed  Google Scholar 

  • Scheinecker C, McHugh R, Shevach EM, Germain RN (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196: 1079-1090

    CAS  PubMed  Google Scholar 

  • Schnorrer P, Behrens GMN, Wilson NS, Pooley JL, Smith CM, El-Sukkari D, Davey G, Kupresanin F, Li M, Maraskovsky E, Belz GT, Carbone FR, Shortman K, Heath WR, Villadangos JA (2006) The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. PNAS 103: 10729-10734

    CAS  PubMed  Google Scholar 

  • Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161: 526-546

    CAS  PubMed  Google Scholar 

  • Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P, Reis e Sousa C (2005) Toll-like receptor 3 promotes cross-priming to virusinfected cells. Nature 433: 887-892

    CAS  PubMed  Google Scholar 

  • Shen L, Rock KL (2006) Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr Opin Immunol 18: 85-91

    CAS  PubMed  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151-161

    CAS  PubMed  Google Scholar 

  • Smith CM, Belz GT, Wilson NS, Villadangos JA, Shortman K, Carbone FR, Heath WR (2003) Cutting edge: Conventional CD8 alpha+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J Immunol 170: 4437-4440

    CAS  PubMed  Google Scholar 

  • So EY, Kang MH, Kim BS (2006) Induction of chemokine and cytokine genes in astrocytes following infection with Theiler’s murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia 53: 858-867

    PubMed  Google Scholar 

  • Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML, Nelson PJ (2006) CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int 70: 591-596

    CAS  PubMed  Google Scholar 

  • Soumelis V, Liu YJ (2006) From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation. Eur J Immunol 36: 2286-2292

    CAS  PubMed  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9: 271-296

    CAS  PubMed  Google Scholar 

  • Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, Knapp W (1997) flt3ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 90: 1425-1434

    CAS  PubMed  Google Scholar 

  • Summers KL, Hock BD, McKenzie JL, Hart DN (2001) Phenotypic characterization of five dendritic cell subsets in human tonsils. Am J Pathol 159: 285-295

    CAS  PubMed  Google Scholar 

  • Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR (2006) A Major Lung CD103 ({alpha}E)beta7 Integrin-Positive Epithelial Dendritic Cell Population Expressing Langerin and Tight Junction Proteins. J Immunol 176: 2161-2172

    CAS  PubMed  Google Scholar 

  • Szomolanyi-Tsuda E, Liang X, Welsh RM, Kurt-Jones EA, Finberg RW (2006) Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol 80: 4286-4291

    CAS  PubMed  Google Scholar 

  • Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101: 3516-3521

    CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2004) Microbial recognition by Toll-like receptors. J Dermatol Sci 34: 73-82

    CAS  PubMed  Google Scholar 

  • Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, Ozato K (2005) IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J Immunol 174: 2573-2581

    CAS  PubMed  Google Scholar 

  • Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176: 3804-3812

    CAS  PubMed  Google Scholar 

  • Triantafilou K, Orthopoulos G, Vakakis E, Ahmed MA, Golenbock DT, Lepper PM, Triantafilou M (2005) Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell Microbiol 7: 1117-1126

    CAS  PubMed  Google Scholar 

  • Vandenabeele S, Hochrein H, Mavaddat N, Winkel K, Shortman K (2001) Human thymus contains 2 distinct dendritic cell populations. Blood 97: 1733-1741

    CAS  PubMed  Google Scholar 

  • Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM (2001) Regulation of Tolllike receptors in human monocytes and dendritic cells. J Immunol 166: 249-255

    CAS  PubMed  Google Scholar 

  • Voisine C, Hubert FX, Trinite B, Heslan M, Josien R (2002) Two phenotypically distinct subsets of spleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity. J Immunol 169: 2284-2291

    CAS  PubMed  Google Scholar 

  • Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27: 40-44

    CAS  PubMed  Google Scholar 

  • Vremec D, O’Keeffe M, Hochrein H, Fuchsberger M, Caminschi I, Lahoud M, Shortman K (2007) Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells. Blood 109: 1165-1173

    CAS  PubMed  Google Scholar 

  • Vremec D, Pooley J, Hochrein H, Wu L, Shortman K (2000) CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164: 2978-2986

    CAS  PubMed  Google Scholar 

  • Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW (2005) Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 79: 12658-12666

    CAS  PubMed  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10: 1366-1373

    CAS  PubMed  Google Scholar 

  • Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436: 1181-1185

    CAS  PubMed  Google Scholar 

  • Wilson NS, El Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman K, Villadangos JA (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102: 2187-2194

    CAS  PubMed  Google Scholar 

  • Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Forster R, Pabst O (2006) Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203: 519-527

    CAS  PubMed  Google Scholar 

  • Wu L, Shortman K (2005) Heterogeneity of thymic dendritic cells. Semin Immunol 17: 304-312

    CAS  PubMed  Google Scholar 

  • Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, Bauer S, Hochrein H, Wagner H (2005) Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol 174: 6129-6136

    CAS  PubMed  Google Scholar 

  • Zhou S, Kurt-Jones EA, Mandell L, Cerny A, Chan M, Golenbock DT, Finberg RW (2005) MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur J Immunol 35: 822-830

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hochrein, H., O’Keeffe, M. (2008). Dendritic Cell Subsets and Toll-Like Receptors. In: Bauer, S., Hartmann, G. (eds) Toll-Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72167-3_8

Download citation

Publish with us

Policies and ethics