Skip to main content

CFD-based Optimization for a Complete Industrial Process: Papermaking

  • Chapter

Abstract

Development of tailored software tools based on coupling of Computational Fluid Dynamics (CFD) with optimization is presented in this paper. In papermaking, industrial applications deal with fluid dynamics at the wet-end of a paper machine as well as in the entire papermaking process.

First, the CFD tools being developed for optimal shape design and optimal control problems at the wet-end (where the paper web is formed) are presented. Different levels of complexity of CFD modeling and a dimension reduction technique are considered in this paper. The reduced CFD model used is validated with a complete model.

In addition, optimization of the whole papermaking process being modeled with different modeling techniques is considered. Our approach is based on interactive multi-objective optimization because the papermaking process as well as the produced paper require multiple criteria to be optimized simultaneously. Typically, the objectives are conflicting which means that compromises need to be done. This is illustrated with numerical examples.

Finally, a completely new design of decision support tools based on multiobjective optimization and multiphysical modeling of large industrial systems is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baines, W., Nicholl, C., Cook, R., Mardon, J.: The taper-flow headboxes (a new design concept). Pulp and Paper Magazine of Canada pp. 139–148 (1956)

    Google Scholar 

  2. Birke, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer (1997)

    Google Scholar 

  3. Brooks, A., Hughes, T.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods Applied in Mechanics and Engineering 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Inc. (2001)

    Google Scholar 

  5. Franca, L., Frey, S.: Stabilized finite element methods: II. the incompressible Navier-Stokes equations. Computer Methods Applied in Mechanics and Engineering 99, 209–233 (1992)

    Article  MathSciNet  Google Scholar 

  6. Giunta, A., Eldred, M.S., Swiler, L.P., Trucano, T.G., Wotjkiewicz, S.F.J.: Perspective on optimization under uncertainty: algorithms and applications. Tech. Rep. 4451, AIAA, American Institute of Aeronautics and Astronautics (2004)

    Google Scholar 

  7. Gowda, M.S.: Inverse and implicit function theorems for H-differentiable and semismooth functions. Optimization Methods and Software 19(5), 443–461 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gunawan, S., Azarm, S.: Multi-objective robust optimization using a sensitivity region concept. Structural and Multidisciplinary Optimization 29, 50–60 (2005)

    Article  Google Scholar 

  9. Hadamard, J.: Leçons sur le calcul des variations. Gauthier-Villars (1910)

    Google Scholar 

  10. Hämäläinen, J.: The optimal shape design of the header. In: Proc. Finite Element Method in Simulation, no. R07/90 in CSC Research Reports, pp. 18–23. Jyväskylä, Finland (1990)

    Google Scholar 

  11. Hämäläinen, J.: Numerical modelling and simulation of fluid flow in headboxes of paper machines. Licentiate Thesis, University of Jyväskylä (1991). Reports on Applied Mathematics and Computing

    Google Scholar 

  12. Hämäläinen, J.: Mathematical modelling and simulation of fluid flows in the headbox of a paper machine. Ph.D. thesis, University of Jyväskylä, Department of Mathematics (1993)

    Google Scholar 

  13. Hämäläinen, J., Mäkinen, R., Tarvainen, P.: Optimal design of paper machine headboxes. International Journal for Numerical Methods in Fluids 34, 685–700 (2000)

    Article  MATH  Google Scholar 

  14. Hämäläinen, J., Malkamäki, T., Toivanen, J.: Genetic algorithms in shape optimization of a paper machine headbox. In: Proc. Evolutionary Algorithms in Engineering and Computer Science, EUROGEN 99, pp. 435–443. Jyväskylä, Finland (1999)

    Google Scholar 

  15. Hämäläinen, J., Tarvainen, P.: CFD-optimized headbox flows. Pulp & Paper Canada 103(1), 39–41 (2002)

    Google Scholar 

  16. Hämäläinen, J., Tarvainen, P., Aspholm, P.: HOCS FIBRE — new tool for optimized fibre orientation angles. In: Proc. 91st annual meeting of Pulp and Paper Technical Association of Canada, PAPTAC 2005. Montreal, Canada (2005)

    Google Scholar 

  17. Hämäläinen, T., Hämäläinen, J.: Modelling of fibre orientation in the headbox jet. Journal of Pulp and Paper Science 33(1), 49–53 (2007)

    Google Scholar 

  18. Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design. John Wiley & Sons, Inc. (1996)

    Google Scholar 

  19. Jin, R., Du, X., Chen, W.: The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization 25, 99–116 (2003)

    Article  Google Scholar 

  20. Karlsson, M., Hämäläinen, J.: A model-based decision-aid system to add value to papermaking. In: P. Neittaanmäki, T. Rossi, K. Majava, O. Pironneau (eds.) Proc. of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2006). Jyväskylä, Finland (2006)

    Google Scholar 

  21. Madetoja, E., Mäkelä, M.M.: On sensitivity analysis of nonsmooth multidisciplinary optimization problems in engineering process line applications. Structural and Multidisciplinary Optimization 31(5), 355–362 (2006)

    Article  MathSciNet  Google Scholar 

  22. Madetoja, E., Rouhiainen, E.K., Tarvainen, P.: A decision support system for paper making based on simulation and optimization. Engineering with Computers (accepted for publication) (2007)

    Google Scholar 

  23. Madetoja, E., Tarvainen, P.: Multiobjective process line optimization under uncertainty applied to papermaking. Structural and Multidisciplinary Optimization (accepted for publication)

    Google Scholar 

  24. Mardon, J., Manson, D., Wilder, J., Monahan, R., Trufitt, A., Brown, E.: The design of manifold systems for paper machine headboxes, part II — taper flow manifolds. TAPPI 46 (1963)

    Google Scholar 

  25. Mattson, C.A., Messac, A.: Pareto frontier based concept selection under uncertainty, with visualization. Optimization and Engineering 6(1), 85–115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publisher (1999)

    Google Scholar 

  27. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spectrum 24, 193–213 (2002)

    Article  MATH  Google Scholar 

  28. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research 170, 909–922 (2006)

    Article  MATH  Google Scholar 

  29. Mohammadi, B., Pironneau, O.: Applied Optimal Shape Optimization for Fluids. Oxford University Press (2001)

    Google Scholar 

  30. Odaka, Y., Furuya, H.: Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter. Structural and Multidisciplinary Optimization 30, 437–446 (2005)

    Article  Google Scholar 

  31. Parsheh, M.: Flow in contractions with applications to headboxes. Ph.D. thesis, Royal Institute of Technology (KTH), Department of Mechanics (2001)

    Google Scholar 

  32. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer-Verlag (1984)

    Google Scholar 

  33. Rodi, W.: Turbulence Models and Their Application in Hydraulics. International Association for Hydraulic Research (1993)

    Google Scholar 

  34. Steuer, R.: Multiple Criteria Optimization: Theory, Computations, and Applications. John Wiley & Sons, Inc. (1986)

    Google Scholar 

  35. Trufitt, A.: Design aspect of manifold type flowspreaders. Pulp and Paper Technology Series, Joint Textbook Committee of the Paper Industry, C.P.P.A. and TAPPI (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hämäläinen, J., Hämäläinen, T., Madetoja, E., Ruotsalainen, H. (2008). CFD-based Optimization for a Complete Industrial Process: Papermaking. In: Thévenin, D., Janiga, G. (eds) Optimization and Computational Fluid Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72153-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72153-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72152-9

  • Online ISBN: 978-3-540-72153-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics