Skip to main content

Abstract

In aerodynamic shape optimization, gradient-based methods often rely on the adjoint approach, which is capable of computing the objective function sensitivities with respect to the design variables. In the literature adjoint approaches are proved to outperform other relevant methods, such as the direct sensitivity analysis, finite differences or the complex variable approach. They appear in two different formulations, namely the continuous and the discrete one, which are both discussed in this chapter.

In the first part, continuous and discrete approaches for the computation of first derivatives are presented. The mathematical background for both approaches is introduced. Based on it, adjoints for either inverse design problems associated with inviscid or viscous flows or for the minimization of viscous losses in internal aerodynamics are developed. The Navier-Stokes equations are used as state equations. The elimination of field integrals expressed in terms of variations in grid metrics leads to a formulation which is independent of the grid type and can thus be employed with either structured or unstructured grids. From the physical point of view, the minimization of viscous losses in ducts or cascades is handled by minimizing either the difference in total pressure between inlet and outlet (the objective function is, then, a boundary integral) or the field integral of entropy generation. The discrete adjoint approach is, practically, used to compare and cross-check the derivatives computed by means of the continuous approach.

In the second part of this chapter, recent theoretical formulations on the computation and use of the Hessian matrix in optimization problems are presented. It is demonstrated that the combined use of the direct sensitivity analysis for the first derivatives followed by the adjoint approach for second derivatives may support the Newton method at the cost of N+2 equivalent flow solutions per optimization cycle. The computation of the exact Hessian is demonstrated using both discrete and continuous approaches.

Test problems are solved using the proposed methods. They are used to compare the so-computed first and second derivatives with those resulting from the use of finite difference schemes. On the other hand, the efficiency of the proposed methods is demonstrated by presenting and comparing convergence plots for each test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, J.J., Kroo, I.M., Jameson, A.: Advanced algorithms for design and optimization of quiet supersonic platform. AIAA Paper 2002-0144 (2002)

    Google Scholar 

  2. Anderson, W.K., Bonhaus, D.L.: Airfoil design on unstructured grids for turbulent flows. AIAA Journal 37(2), 185–191 (1999)

    Google Scholar 

  3. Anderson, W.K., Bonhaus, D.L., Daryl, L.: Aerodynamic design on unstructured grids for turbulent flows. NASA Technical Memorandum 112867 (1997)

    Google Scholar 

  4. Anderson, W.K., Venkatakrishnan, V.: Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. AIAA Paper 97-0643 (1997)

    Google Scholar 

  5. Anderson, W.K., Venkatakrishnan, V.: Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Computers and Fluids 28, 443–480 (1999)

    Article  MATH  Google Scholar 

  6. Arian, E., Salas, M.D.: Admitting the inadmissible: Adjoint formulation for incomplete cost functionals in aerodynamic optimization. NASA/CR-97-206269, ICASE Report No.97-69 (1997)

    Google Scholar 

  7. Arian, E., Taasan, S.: Analysis of the Hessian for aerodynamic optimization: Inviscid flow. Computers and Fluids 28(7), 853–877 (1999)

    Article  MATH  Google Scholar 

  8. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press (1996)

    Google Scholar 

  9. Baysal, O., Ghayour, K.: Continuous adjoint sensitivities for optimization with general cost functionals on unstructured meshes. AIAA Journal 39(1), 48–55 (2001)

    Google Scholar 

  10. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)

    Google Scholar 

  11. Campobasso, M.S., Duta, M.C., Giles, M.B.: Adjoint calculation of sensitivities of turbomachinery objective functions. AIAA Journal of Propulsion and Power 19(4), 693–703 (2003)

    Article  Google Scholar 

  12. Dadone, A., Grossman, B.: Progressive optimization of inverse fluid dynamic design problems. Computers and Fluids 29, 1–32 (2000)

    Article  MATH  Google Scholar 

  13. Dadone, A., Grossman, B.: Fast convergence of inviscid fluid dynamic design problems. Computers and Fluids 32, 607–627 (2003)

    Article  MATH  Google Scholar 

  14. Duta, M.C., Giles, M.B., Campobasso, M.S.: The harmonic adjoint approach to unsteady turbomachinery design. International Journal for Numerical Methods in Fluids 40(3–4), 323–332 (2002)

    Article  MATH  Google Scholar 

  15. Elliot, J., Peraire, J.: Aerodynamic design using unstructured meshes. AIAA Paper 96-1941 (1996)

    Google Scholar 

  16. Elliot, J., Peraire, J.: Aerodynamic optimization using unstructured meshes with viscous effects. AIAA Paper 97-1849 (1997)

    Google Scholar 

  17. Elliot, J., Peraire, J.: Practical 3d aerodynamic design and optimization using unstructured meshes. AIAA Journal 35(9), 1479–1485 (1997)

    Article  Google Scholar 

  18. Elliot, J., Peraire, J.: Constrained, multipoint shape optimisation for complex 3d configurations. Aeronautical Journal 102(1017), 365–376 (1998)

    Google Scholar 

  19. Forest, A.R.: Interactive interpolation and approximation by Bezier polynomials. The Computer Journal 15(1), 71–79 (1972)

    MathSciNet  Google Scholar 

  20. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Progress in Aerospace Sciences 38, 43–76 (2002)

    Article  Google Scholar 

  21. Giles, M.B.: Discrete adjoint approximations with shocks. In: T. Hou, E. Tadmor (eds.) Hyperbolic Problems: Theory, Numerics, Applications. Springer-Verlag (2003)

    Google Scholar 

  22. Giles, M.B., Duta, M.C., Muller, J.D., Pierce, N.A.: Algorithm developments for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003)

    Google Scholar 

  23. Giles, M.B., Pierce, N.A.: Adjoint equations in CFD: duality, boundary conditions and solution behaviour. AIAA Paper 97-1850 (1997)

    Google Scholar 

  24. Giles, M.B., Pierce, N.A.: On the properties of solutions of the adjoint Euler equations. In: 6th ICFD Conference on Numerical Methods for Fluid Dynamics. Oxford, UK (1998)

    Google Scholar 

  25. Harbeck, M., Jameson, A.: Exploring the limits of transonic shock-free airfoil design. AIAA Paper 2005-1041 (2005)

    Google Scholar 

  26. Hazra, S., Schulz, V., Brezillon, J., Gauger, N.R.: Aerodynamic shape optimization using simultaneous pseudo-timestepping. Journal of Computational Physics 204(1), 46–64 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hazra, S.B., Schulz, V.: Simultaneous pseudo-timestepping for aerodynamic shape optimization problems with state constraints. SIAM Journal of Scientific Computing 28(3), 1078–1099 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Computing 3, 233–260 (1988)

    Article  MATH  Google Scholar 

  29. Jameson, A.: Optimum aerodynamic design using CFD and control theory. AIAA Paper 95-1729 (1995)

    Google Scholar 

  30. Jameson, A., Alonso, J.J.: Automatic aerodynamic optimization on distributed memory architectures. AIAA Paper 96-0409 (1996)

    Google Scholar 

  31. Jameson, A., Kim, S.: Reduction of the adjoint gradient formula in the continous limit. AIAA Paper 2003-0040 (2003)

    Google Scholar 

  32. Jameson, A., Pierce, N., Martinelli, L.: Optimum aerodynamic design using the Navier-Stokes equations. Theoretical and Computational Fluid Dynamics 10, 213–237 (1998)

    Article  MATH  Google Scholar 

  33. Jameson, A., Reuther, J.: Control theory based airfoil design using the Euler equations. AIAA Paper 94-4272 (1994)

    Google Scholar 

  34. Jameson, A., Shankaran, S., Martinelli, L., Haimes, B.: Aerodynamic shape optimization of complete aircraft configuration. AIAA Paper 2004-0533 (2004)

    Google Scholar 

  35. Kim, S.K., Alonso, J.J., Jameson, A.: Two-dimensional high-lift aerodynamic optimization using the continuous adjoint method. AIAA Paper 2000-4741 (2000)

    Google Scholar 

  36. Kim, S.K., Alonso, J.J., Jameson, A.: Design optimization of high-lift configurations using a viscous continuous adjoint method. AIAA Paper 2002-0844 (2002)

    Google Scholar 

  37. Kuruvila, G., Taasan, S., Salas, M.D.: Airfoil design and optimization by the one-shot method. AIAA Paper 95-0478 (1995)

    Google Scholar 

  38. Leoviriyakit, K., Jameson, A.: Aero-structural wing planform optimization. AIAA Paper 2004-0029 (2004)

    Google Scholar 

  39. Leoviriyakit, K., Jameson, A.: Multi-point wing planform optimization via control theory. AIAA Paper 2005-0450 (2005)

    Google Scholar 

  40. Leoviriyakit, K., Kim, S., Jameson, A.: Aero-structural wing planform optimization using the Navier-Stokes equations. AIAA Paper 2004-4479 (2004)

    Google Scholar 

  41. Mavriplis, D.J.: A discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes. AIAA Paper 2006-50 (2006)

    Google Scholar 

  42. Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annual Review of Fluid Mechanics 36, 255–279 (2004)

    Article  MathSciNet  Google Scholar 

  43. Nadarajah, S., Jameson, A.: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. AIAA Paper 2000-0667 (2000)

    Google Scholar 

  44. Nadarajah, S., Jameson, A.: Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization. AIAA Paper 2001-2530 (2001)

    Google Scholar 

  45. Nadarajah, S., Jameson, A.: Optimum shape design for unsteady three-dimensional viscous flows using a non-linear frequency domain method. AIAA Paper 2002-2838 (2002)

    Google Scholar 

  46. Nadarajah, S., Jameson, A., Alonso, J.J.: An adjoint method for the calculation of remote sensitivities in supersonic flow. AIAA Paper 2002-0261 (2002)

    Google Scholar 

  47. Nadarajah, S., McMullen, M., Jameson, A.: Non-linear frequency domain based optimum shape design for unsteady three-dimensional flow. AIAA Paper 2002-2838 (2002)

    Google Scholar 

  48. Newman, J.C., Anderson, W.K., Whitfield, D.L.: Multidisciplinary sensitivity derivatives using complex variables. Tech. Rep. MSSU-COE-ERC-98-08, Mississippi State University (1998)

    Google Scholar 

  49. Nielsen, E.J., Anderson, W.K.: Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA Paper 2001-0596 (2001)

    Google Scholar 

  50. Nielsen, E.J., Anderson, W.K.: Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA Journal 40(6), 1155–1163 (2002)

    Google Scholar 

  51. Nielsen, E.J., Park, M.A.: Using an adjoint approach to eliminate mesh sensitivities in computational design. AIAA Paper 2005-0491 (2005)

    Google Scholar 

  52. Papadimitriou, D.I., Giannakoglou, K.C.: Compressor blade optimization using a continuous adjoint formulation. In: ASME Turbo Expo, GT2006/90466 (2006)

    Google Scholar 

  53. Papadimitriou, D.I., Giannakoglou, K.C.: A continuous adjoint method with objective function derivatives based on boundary integrals for inviscid and viscous flows. Computers and Fluids 36, 325–341 (2007)

    Article  Google Scholar 

  54. Papadimitriou, D.I., Giannakoglou, K.C.: Total pressure losses minimization in turbomachinery cascades, using a new continuous adjoint formulation. Journal of Power and Energy: Special Issue on Turbomachinery 221(6), 865–872 (2007)

    Google Scholar 

  55. Pierce, N.A., Giles, M.B.: An introduction to the adjoint approach to design. Flow, Turbulence and Combustion 65(3–4), 393–415 (2000)

    MATH  Google Scholar 

  56. Pierce, N.A., Giles, M.B.: Analytic adjoint solutions for the quasi-one-dimensional Euler equations. Journal of Fluid Mechanics 426, 327–345 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. Pironneau, O.: Optimal shape design for elliptic systems. Springer-Verlag, New York (1984)

    MATH  Google Scholar 

  58. Rall, L.B.: Automatic Differentiation: Techniques and Applications. Springer-Verlag (1981)

    Google Scholar 

  59. Reuther, J., Alonso, J.J., Rimlinger, M.J., Jameson, A.: Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers. Computers and Fluids 28, 675–700 (1999)

    Article  MATH  Google Scholar 

  60. Soto, O., Lohner, R.: On the computation of flow sensitivities from boundary integrals. AIAA Paper 2004-0112 (2004)

    Google Scholar 

  61. Taasan, S., Kuruvila, G., Salas, M.D.: Aerodynamic design and optimization in oneshot. AIAA Paper 91-005 (1992)

    Google Scholar 

  62. Tortorelli, D., Michaleris, P.: Design sensitivity analysis: Overview and review. Inverse Problems in Engineering 1, 71–105 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giannakoglou, K.C., Papadimitriou, D.I. (2008). Adjoint Methods for Shape Optimization. In: Thévenin, D., Janiga, G. (eds) Optimization and Computational Fluid Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72153-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72153-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72152-9

  • Online ISBN: 978-3-540-72153-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics