Skip to main content

A Few Illustrative Examples of CFD-based Optimization

Heat Exchanger, Laminar Burner and Turbulence Modeling

  • Chapter
Optimization and Computational Fluid Dynamics

Abstract

In this chapter, several multi-objective design optimizations are performed in order to illustrate major issues associated with CFD-based optimization. First, a heat exchanger configuration (Case A) is considered using the coupled solution of the flow/heat transfer processes. The aim of the procedure is to find the positions of the tubes most favorable to simultaneously maximize heat exchange while obtaining a minimum pressure loss.

Next, the optimization of the flame shape of a laminar burner is investigated when varying the fuel/air ratio in a primary and a secondary inlet (Case B). The objectives are to reduce the CO emission at a prescribed distance from the injection plane and to obtain the most homogeneous temperature profile at the same position. The flow involving chemical reactions is solved using the in-house Computational Fluid Dynamics (CFD) code UGC +. These two cases are the continuation of our previous studies, introducing new results and new aspects.

The last case presented here is a new proposal to optimize the model parameters of an engineering turbulence model (Case C).

In all the presented cases, an Evolutionary Algorithm (EA) is applied to find the optimal configurations. An in-house computer package, called Opal, performs the optimization process in a fully automatic manner. The EA relies on a relatively large number of simulations which may result in a considerable computational effort, depending on the configuration. The procedure can thus be performed in parallel on a Linux PC-cluster to reduce user waiting time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, N., Behdinan, K.: Optimal geometrical design of aircraft using genetic algorithms. Transactions of the Canadian Society for Mechanical Engineering 26(4), 373–388 (2003)

    Google Scholar 

  2. Antonov, I.A., Saleev, V.M.: An economic method of computing LPτ-sequences. U.S.S.R. Computational Mathematics and Mathematical Physics 19, 252–256 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balagangadhar, D., Roy, S.: Design sensitivity analysis of steady fluid-thermal systems. Computer Methods in Applied Mechanics and Engineering 190, 5465–5479 (2001)

    Article  MATH  Google Scholar 

  4. Barkley, D.: Linear analysis of the cylinder wake mean flow. Europhysics Letters 75(5), 750–756 (2006)

    Article  MathSciNet  Google Scholar 

  5. Barkley, D., Henderson, R.D.: Three-dimensional Floquet stability analysis of the wake of a circular cylinder. Journal of Fluid Mechanics 322, 215–241 (1996)

    Article  MATH  Google Scholar 

  6. Baron, R.: Calcul et optimisation de brûleurs laminaires industriels. Ph.D. thesis, école Centrale Paris, 2002–37 (2002)

    Google Scholar 

  7. Baron, R., Paxion, S., Gicquel, O., Simous, N., Bastian, P., Thévenin, D.: Development of a 3D parallel multigrid solver for fast and accurate laminar steady flame computations. In: E.H. Hirschel (ed.) Numerical Flow Simulation III, pp. 115–128. Springer-Verlag (2003)

    Google Scholar 

  8. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG-A flexible software toolbox for solving partial differential equations. Computing and Visualization in Science 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  9. Bejan, A.: Entropy Generation Minimization. CRC Press, Boca Raton, Florida (1996)

    MATH  Google Scholar 

  10. Bello-Ochende, T., Bejan, A.: Constructal multi-scale cylinders in cross-flow. International Journal of Heat and Mass Transfer 48(7), 1373–1383 (2005)

    Article  Google Scholar 

  11. Bongers, H., van Oijen, J.A., Somers, L.M.T., de Goey, L.P.H.: The flamelet-generated manifold method applied to steady planar partially premixed counterflow flames. Combustion Science and Technology 177(12), 2373–2393 (2005)

    Article  Google Scholar 

  12. Bonjour, J., Rocha, L.A.O., Bejan, A., Meunier, F.: Dendritic fins optimization for a coaxial two-stream heat exchanger. International Journal of Heat and Mass Transfer 47(1), 111–124 (2004)

    Article  MATH  Google Scholar 

  13. Büche, D., Stoll, P., Dornberger, R., Koumoutsakos, P.: Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 32(4), 460–473 (2002)

    Article  Google Scholar 

  14. Büche, D., Stoll, P., Koumoutsakos, P.: An evolutionary algorithm for multi-objective optimization of combustion processes. Center for Turbulence Research Annual Research Briefs 2001 pp. 231–239 (2001)

    Google Scholar 

  15. Cheng, C.H., Chang, M.H.: Shape design for a cylinder with uniform temperature distribution on the outer surface by inverse heat transfer method. International Journal of Heat and Mass Transfer 46(1), 101–111 (2003)

    Article  MATH  Google Scholar 

  16. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, London (2001)

    MATH  Google Scholar 

  17. Dias Jr., T., Milanez, L.: Optimal location of heat sources on a vertical wall with natural convection through genetic algorithms. International Journal of Heat and Mass Transfer 49(13–14), 2090–2096 (2006)

    Google Scholar 

  18. Edwards, K., Edgar, T., Manousiouthakis, V.: Kinetic model reduction using genetic algorithms. Computers and Chemical Engineering 22(1–2), 239–246 (1998)

    Article  Google Scholar 

  19. Elliott, L., Ingham, D., Kyne, A., Mera, N., Pourkashanian, M., Wilson, C.: Multiobjective genetic algorithm optimization for calculating the reaction rate coefficients for hydrogen combustion. Industrial and Engineering Chemistry Research 42(6), 1215–1224 (2003)

    Article  Google Scholar 

  20. Elliott, L., Ingham, D., Kyne, A., Mera, N., Pourkashanian, M., Wilson, C.: Reaction mechanism reduction and optimization using genetic algorithms. Industrial and Engineering Chemistry Research 44(4), 658–667 (2005)

    Article  Google Scholar 

  21. Fabbri, G.: Heat transfer optimization in internally finned tubes under laminar flow conditions. International Journal of Heat and Mass Transfer 41(10), 1243–1253 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fabbri, G.: Heat transfer optimization in corrugated wall channels. International Journal of Heat and Mass Transfer 43(23), 4299–4310 (2000)

    Article  MATH  Google Scholar 

  23. Fabbri, G.: Effect of viscous dissipation on the optimization of the heat transfer in internally finned tubes. International Journal of Heat and Mass Transfer 47(14–16), 3003–3015 (2004)

    Article  MATH  Google Scholar 

  24. Falco, I.D.: An introduction to Evolutionary Algorithms and their application to the aerofoil design problem — Part I: the Algorithms. von Kármán Lecture Series on Fluid Dynamics, Bruxelles, Belgium, April 1997. (1997)

    Google Scholar 

  25. Fiorina, B., Baron, R., Gicquel, O., Thévenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combustion Theory and Modelling 7(3), 449–470 (2003)

    Google Scholar 

  26. Fiorina, B., Gicquel, O., Carpentier, S., Darabiha, N.: Validation of the FPI chemistry reduction method for diluted nonadiabatic premixed flames. Combustion Science and Technology 176(5–6), 785–797 (2004)

    Article  Google Scholar 

  27. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combustion and Flame 140(3), 147–160 (2005)

    Article  Google Scholar 

  28. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, New York (1987)

    MATH  Google Scholar 

  29. Fluent Inc.: GAMBIT 2.3 User’s Guide. Lebanon, New Hampshire (2005)

    Google Scholar 

  30. Fluent Inc.: FLUENT 6.3 User’s Guide. Lebanon, New Hampshire (2006)

    Google Scholar 

  31. Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms. International Journal of Heat and Mass Transfer 49(5–6), 1090–1099 (2006)

    Article  Google Scholar 

  32. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: S. Forest (ed.) Genetic Algorithms: Proceedings of the Fifth International Conference, pp. 416–423. Morgan Kaufmann, San Mateo, California (1993)

    Google Scholar 

  33. Giovangigli, V.: Multicomponent flow modeling. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  34. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, Massachusetts (1989)

    MATH  Google Scholar 

  35. Gordner, A.: Numerische Simulation nichtlinearer Aeroakustik bei kleinen Machzahlen. Ph.D. thesis, Universität Heidelberg, Germany (2005)

    MATH  Google Scholar 

  36. Gropp, W., Lusk, E.: User’s guide for MPICH, a portable implementation of MPI. Tech. Rep. ANL-96/6, Argonne National Laboratory (1994)

    Google Scholar 

  37. Guo, Y.Y., He, G., Hsu, A.: Application of genetic algorithms to the development of a variable Schmidt number model for jet-in-crossflows. International Journal of Numerical Methods for Heat & Fluid Flow 11, 744–760 (2001)

    Article  MATH  Google Scholar 

  38. Hilbert, R., Janiga, G., Baron, R., Thévenin, D.: Multiobjective shape optimization of a heat exchanger using parallel genetic algorithms. International Journal of Heat and Mass Transfer 49(15–16), 2567–2577 (2006)

    Article  Google Scholar 

  39. Hilbert, R., Tap, F., El-Rabii, H., Thévenin, D.: Impact of detailed chemistry and transport models on turbulent combustion simulations. Progress in Energy and Combustion Science 30, 61–117 (2004)

    Article  Google Scholar 

  40. Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids 18, 011,702 (2006)

    Article  Google Scholar 

  41. Janiga, G., Gicquel, O., Thévenin, D.: High-resolution simulation of three-dimensional laminar burners using tabulated chemistry on parallel computers. In: 2nd ECCOMAS Thematic Conference on Computational Combustion, pp. 1–15. Delft, The Netherlands (2007)

    Google Scholar 

  42. Janiga, G., Gordner, A., Shalaby, H., Thévenin, D.: Simulation of laminar burners using detailed chemistry on parallel computers. In: P. Wesseling, E. Onate, J. Périaux (eds.) European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, pp. 210/1–210/14. Egmond aan Zee, The Netherlands (2006)

    Google Scholar 

  43. Janiga, G., Thévenin, D.: Numerical optimisation of a laminar burner to reduce CO emissions. In: T. Lajos, J. Vad (eds.) Proc. Conf. Modelling Fluid Flow, pp. 109–116. Budapest, Hungary (2006)

    Google Scholar 

  44. Janiga, G., Thévenin, D.: Reducing the CO emissions in a laminar burner using different numerical optimization methods. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221(5), 647–655 (2007)

    Article  Google Scholar 

  45. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009, Sandia National Laboratories, Livermore, California (1989)

    Google Scholar 

  46. Kock, F., Herwig, H.: Entropy production calculation for turbulent shear flows and their implementation in CFD codes. International Journal of Heat and Fluid Flow 26, 672–680 (2005)

    Article  Google Scholar 

  47. Laverdant, A., Thévenin, D.: Interaction of a gaussian acoustic wave with a turbulent premixed flame. Combustion and Flame 134, 11–19 (2003)

    Article  Google Scholar 

  48. Lee, J., Hajela, P.: Parallel genetic algorithm implementation in multidisciplinary rotor blade design. Journal of Aircraft 33(5), 962–969 (1996)

    Article  Google Scholar 

  49. Lee, K.S., Kim, W.S., Si, J.M.: Optimal shape and arrangement of staggered pins in the channel of a plate heat exchanger. International Journal of Heat and Mass Transfer 44(17), 3223–3231 (2001)

    Article  MATH  Google Scholar 

  50. Lindstedt, P.: Modelling of the chemical complexities of flames. Proceedings of the Combustion Institute 27, 269–285 (1998)

    Google Scholar 

  51. Liu, Y., Phan-Thien, N.: An optimum spacing problem for three chips mounted on a vertical substrate in an enclosure. Numerical Heat Transfer, Part A: Applications 37, 613–630 (2000)

    Article  Google Scholar 

  52. Maas, U., Pope, S.: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame 88(3–4), 239–264 (1992)

    Article  Google Scholar 

  53. Majda, A., Sethian, J.: The derivation and numerical solution of the equations for zero Mach number combustion. Combustion Science and Technology 42, 185–205 (1985)

    Article  Google Scholar 

  54. Mäkinen, R., Neittaanmäki, P., Périaux, J., Toivanen, J.: A genetic algorithm for multiobjective design optimization in aerodynamics and electromagnetics. In: K.D. Papailiou, D. Tsahalis, J. Périaux, D. Knörzer (eds.) Computational Fluid Dynamics’ 98, Proceedings of the ECCOMAS 98 Conference, vol. 2, pp. 418–422. Wiley, Athens, Greece (1998)

    Google Scholar 

  55. Mäkinen, R.A.E., Périaux, J., Toivanen, J.: Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms. International Journal for Numerical Methods in Fluids 30(2), 149–159 (1999)

    Article  MATH  Google Scholar 

  56. Matos, R., Laursen, T., Vargas, J., Bejan, A.: Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. International Journal of Thermal Sciences 43(5), 477–487 (2004)

    Article  Google Scholar 

  57. Matos, R.S., Vargas, J.V.C., Laursen, T.A., Bejan, A.: Optimally staggered finned circular and elliptic tubes in forced convection. International Journal of Heat and Mass Transfer 47(6–7), 1347–1359 (2004)

    Article  MATH  Google Scholar 

  58. Message Passing Interface Forum: MPI: A message-passing interface standard. International Journal of Supercomputer Applications 8(3/4) (1994)

    Google Scholar 

  59. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs. Springer-Verlag, Berlin, Heidelberg, New York (1996)

    MATH  Google Scholar 

  60. Moser, R.D., J., K., Mansour, N.N.: DNS of turbulent channel flow up to Reπ=590. Physics of Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  61. Muyl, F., Dumas, L., Herbert, V.: Hybrid method for aerodynamic shape optimization in automotive industry. Computers & Fluids 33(5–6), 849–858 (2004)

    Article  MATH  Google Scholar 

  62. Nejati, V., Matsuuchi, K.: Aerodynamics design and genetic algorithms for optimization of airship bodies. JSME International Journal Series B-Fluids and Thermal Engineering 46(4), 610–617 (2003)

    Article  Google Scholar 

  63. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    MATH  Google Scholar 

  64. Obayashi, S., Tsukahara, T., Nakamura, T.: Multiobjective genetic algorithm applied to aerodynamic design of cascade airfoils. IEEE Transactions on Industrial Electronics 47(1), 211–216 (2000)

    Article  Google Scholar 

  65. van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combustion Science and Technology 161, 113–137 (2000)

    Article  Google Scholar 

  66. Okabe, T., Foli, K., Olhofer, M., Jin, Y., Sendhoff, B.: Comparative studies on micro heat exchanger optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 647–654 (2003)

    Google Scholar 

  67. Paschereit, C., Schuermans, B., Büche, D.: Combustion process optimization using evolutionary algorithm. In: American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, vol. 2, pp. 281–291 (2003)

    Google Scholar 

  68. Paxion, S.: Développement d’un solveur multigrille non-structuré parallèle pour la simulation de flammes laminaires en chimie et transport complexes. Phd thesis, École Centrale Paris, France, 1999–40 (1999)

    Google Scholar 

  69. Reusken, A.: The smoothing property for regular splittings. In: W. Hackbusch, G. Wittum (eds.) Incomplete Decompositions (ILU)-Algorithms, theory and applications, pp. 130–138. Vieweg, Braunschweig, Germany (1993)

    Google Scholar 

  70. da Silva, A., Lorente, S., Bejan, A.: Optimal distribution of discrete heat sources on a plate with laminar forced convection. International Journal of Heat and Mass Transfer 47(10–11), 2139–2148 (2004)

    MATH  Google Scholar 

  71. da Silva, A., Lorente, S., Bejan, A.: Optimal distribution of discrete heat sources on a wall with natural convection. International Journal of Heat and Mass Transfer 47(2), 203–214 (2004)

    Article  MATH  Google Scholar 

  72. Sobol’, I.M.: Distribution of points in a cube and approximate evaluation of integrals. U.S.S.R. Computational Mathematics and Mathematical Physics 7, 86–112 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  73. Srinivas, N., Deb, K.: Multiobjective optimization using non-dominated sorting in genetic algorithm. Evolutionary Computing 2(3), 221–248 (1995)

    Google Scholar 

  74. Thévenin, D., Zähringer, K., Janiga, G.: Automatic optimization of two-dimensional burners. In: Proceedings of the European Combustion Meeting ECM05, pp. 240/1–240/6. Louvain-la-Neuve, Belgium (2005)

    Google Scholar 

  75. Tiwari, S., Maurya, D., Biswas, G., Eswaran, V.: Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets. International Journal of Heat and Mass Transfer 46(15), 2841–2856 (2003)

    Article  MATH  Google Scholar 

  76. Visser, J.A., de Kock, D.J.: Optimization of heat sink mass using the DYNAMIC-Q numerical optimization method. Communications in Numerical Methods in Engineering 18(10), 721–727 (2002)

    Article  MATH  Google Scholar 

  77. van der Vorst, H.A.: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM Journal on Statistical and Scientific Computing 13(2), 631–644 (1992)

    Article  MATH  Google Scholar 

  78. Welch, B., Jones, K., Hobbs, J.: Practical Programming in Tcl and Tk. Prentice Hall (2003)

    Google Scholar 

  79. Wilcox, D.C.: Turbulence modeling for CFD. DCW Industries, Inc., La Cañada, California (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janiga, G. (2008). A Few Illustrative Examples of CFD-based Optimization. In: Thévenin, D., Janiga, G. (eds) Optimization and Computational Fluid Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72153-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72153-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72152-9

  • Online ISBN: 978-3-540-72153-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics