Skip to main content

The Molecular Basis of Antibody Protection Against West Nile Virus

  • Chapter
Human Antibody Therapeutics for Viral Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 317))

West Nile virus (WNV) infection of mosquitoes, birds, and vertebrates continues to spread in the Western Hemisphere. In humans, WNV infects the central nervous system and causes severe disease, primarily in the immunocompromised and elderly. In this review we discuss the mechanisms by which antibody controls WNV infection. Recent virologic, immunologic, and structural experiments have enhanced our understanding on how antibodies neutralize WNV and protect against disease. These advances have significant implications for the development of novel antibody-based therapies and targeted vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison SL, Schalich J, Stiasny K, Mandl CW, Kunz C, Heinz FX (1995) Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69:695–700

    PubMed  CAS  Google Scholar 

  • Allison SL, Schalich J, Stiasny K, Mandl CW, Heinz FX (2001) Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75:4268–4275

    Article  PubMed  CAS  Google Scholar 

  • Anderson JF, Rahal JJ (2002) Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg Infect Dis 8:107–108

    Article  PubMed  Google Scholar 

  • Arroyo J, Miller CA, Catalan J, Monath TP (2001) Yellow fever vector live-virus vaccines: West Nile virus vaccine development. Trends Mol Med 7:350–354

    Article  PubMed  CAS  Google Scholar 

  • Barrett AD, Gould EA (1986) Antibody-mediated early death in vivo after infection with yellow fever virus. J Gen Virol 67:2539–2542

    Article  PubMed  CAS  Google Scholar 

  • Beasley DW, Aaskov JG (2001) Epitopes on the dengue 1 virus envelope protein recognized by neutralizing IgM monoclonal antibodies. Virology 279:447–458

    Article  PubMed  CAS  Google Scholar 

  • Beasley DW, Barrett AD (2002a) Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76:13097–13100

    Article  PubMed  CAS  Google Scholar 

  • Beasley DW, Li L, Suderman MT, Barrett AD (2002b) Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23

    Article  PubMed  CAS  Google Scholar 

  • Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, Smith DR, Gromowski GD, Higgs S, Kinney RM, Barrett AD (2005) Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347

    Article  PubMed  CAS  Google Scholar 

  • Ben-Nathan D, Lustig S, Tam G, Robinzon S, Segal S, Rager-Zisman B (2003) Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J Infect Dis 188:5–12

    Article  PubMed  CAS  Google Scholar 

  • Berry DM, Almeida JD (1968) The morphological and biological effects of various antisera on avian infectious bronchitis virus. J Gen Virol 3:97–102

    Article  PubMed  CAS  Google Scholar 

  • Berthet FX, Zeller HG, Drouet MT, Rauzier J, Digoutte JP, Deubel V (1997) Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78:2293–2297

    PubMed  CAS  Google Scholar 

  • Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, Boer E, Wolfinbarger JB, Bloom ME (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79:12828–12839

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj S, Holbrook M, Shope RE, Barrett AD, Watowich SJ (2001) Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75:4002–4007

    Article  PubMed  CAS  Google Scholar 

  • Brandriss MW, Schlesinger JJ, Walsh EE, Briselli M (1986) Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J Gen Virol 67:229–234

    Article  PubMed  Google Scholar 

  • Brault AC, Langevin SA, Bowen RA, Panella NA, Biggerstaff BJ, Miller BR, Nicholas K (2004) Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10:2161–2168

    PubMed  Google Scholar 

  • Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738

    Article  PubMed  CAS  Google Scholar 

  • Brinton MA (2002) The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402

    Article  PubMed  CAS  Google Scholar 

  • Burke DS, Monath TP (2001) Flaviviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1043–1125

    Google Scholar 

  • Burton DR, Saphire EO, Parren PW (2001) A model for neutralization of viruses based on antibody coating of the virion surface. Curr Top Microbiol Immunol 260:109–143

    PubMed  CAS  Google Scholar 

  • Busch MP, Caglioti S, Robertson EF, McAuley JD, Tobler LH, Kamel H, Linnen JM, Shyamala V, Tomasulo P, Kleinman SH (2005) Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N Engl J Med 353:460–467

    Article  PubMed  CAS  Google Scholar 

  • Butrapet S, Kimura-Kuroda J, Zhou DS, Yasui K (1998) Neutralizing mechanism of a monoclonal antibody against Japanese encephalitis virus glycoprotein E. Am J Trop Med Hyg 58:389–398

    PubMed  CAS  Google Scholar 

  • Byrne SN, Halliday GM, Johnston LJ, King NJ (2001) Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol 117:702–709

    Article  PubMed  CAS  Google Scholar 

  • Cardosa MJ, Porterfield JS, Gordon S (1983) Complement receptor mediates enhanced flavivirus replication in macrophages. J Exp Med 158:258–263

    Article  PubMed  CAS  Google Scholar 

  • Cardosa MJ, Gordon S, Hirsch S, Springer TA, Porterfield JS (1986) Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. J Virol 57:952–959

    PubMed  CAS  Google Scholar 

  • Cecilia D, Gould EA (1991) Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181:70–77

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Diamond MS (2003) Pathogenesis of flavivirus encephalitis. In: Chambers TJ, Monath TP (eds) The flaviviruses: current molecular aspects of evolution, biology, and disease prevention. Academic Press, San Diego, pp 273–342

    Google Scholar 

  • Chambers TJ, Halevy M, Nestorowicz A, Rice CM, Lustig S (1998) West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79:2375–2380

    PubMed  CAS  Google Scholar 

  • Chang GJ, Davis BS, Hunt AR, Holmes DA, Kuno G (2001) Flavivirus DNA vaccines: current status and potential. Ann N Y Acad Sci 951:272–285

    PubMed  CAS  Google Scholar 

  • Choi KS, Nah JJ, Ko, YJ, Kim YJ, Joo YS (2007) The DE loop of the domain III of the envelope protein appears to be associated with West Nile virus neutralization. Virus Res 123:216–218

    Article  PubMed  CAS  Google Scholar 

  • Chu JJ, Ng ML (2004a) Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem 279:54533–54541

    Article  PubMed  CAS  Google Scholar 

  • Chu JJ, Ng ML (2004b) Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555

    Article  PubMed  CAS  Google Scholar 

  • Chu JJ, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML (2005) Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 86:405–412

    Article  PubMed  CAS  Google Scholar 

  • Chung KM, Liszewski MK, Nybakken G, Davis AE, Townsend RR, Fremont DH, Atkinson JP, Diamond MS (2006a) West Nile virus non-structural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci USA 103:19111–19116

    Article  PubMed  CAS  Google Scholar 

  • Chung KM, Nybakken GE, Thompson BS, Engle MJ, Marri A, Fremont DH, Diamond MS (2006b) Antibodies against West Nile virus non-structural (NS)-1 protein prevent lethal infection through Fc gamma receptor-dependent and independent mechanisms. J Virol 80:1340–1351

    Article  PubMed  CAS  Google Scholar 

  • Chung KM, Thompson BS, Fremont DH, Diamond MS (2007) Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor mediated phagocytosis and clearance of West Nile virus infected cells. J Virol. In press.

    Google Scholar 

  • Churdboonchart V, Bhamarapravati N, Peampramprecha S, Sirinavin S (1991) Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am J Trop Med Hyg 44:481–493

    PubMed  CAS  Google Scholar 

  • Cooper NR, Jensen FC, Welsh RM Jr, Oldstone MB (1976) Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med 144:970–984

    Article  PubMed  CAS  Google Scholar 

  • Crill WD, Chang GJ (2004) Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 78:13975–13986

    Article  PubMed  CAS  Google Scholar 

  • Crill WD, Roehrig JT (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75:7769–7773

    Article  PubMed  CAS  Google Scholar 

  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75:4040–4047

    Article  PubMed  CAS  Google Scholar 

  • Davis CW, Mattei LM, Nguyen HY, Doms RW, Pierson TC (2006a) The location of N-linked glycans on West Nile virions controls their interactions with CD209. J Biol Chem 281:37183–37194

    Article  PubMed  Google Scholar 

  • Davis CW, Nguyen HY, Hanna SL, Sanchez MD, Doms RW, Pierson TC (2006b) West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301

    Article  PubMed  CAS  Google Scholar 

  • Davis LE, DeBiasi R, Goade DE, Haaland KY, Harrington JA, Harnar JB, Pergam SA, King MK, DeMasters BK, Tyler KL (2006c) West Nile virus neuroinvasive disease. Ann Neurol 60:286–300

    Article  PubMed  Google Scholar 

  • Deardorff E, Estrada-Franco J, Brault AC, Navarro-Lopez R, Campomanes-Cortes A, Paz-Ramirez P, Solis-Hernandez M, Ramey WN, Davis CT, Beasley DW, Tesh RB, Barrett AD, Weaver SC (2006) Introductions of West Nile virus strains to Mexico. Emerg Infect Dis 12:314–318

    PubMed  Google Scholar 

  • den Haan JM, Bevan MJ (2002) Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(−) dendritic cells in vivo. J Exp Med 196:817–827

    Article  CAS  Google Scholar 

  • Despres P, Combredet C, Frenkiel MP, Lorin C, Brahic M, Tangy F (2005) Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J Infect Dis 191:207–214

    Article  PubMed  CAS  Google Scholar 

  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M (2003a) B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586

    Article  PubMed  CAS  Google Scholar 

  • Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M (2003b) Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16:259–278

    Article  PubMed  CAS  Google Scholar 

  • Diamond MS, Sitati E, Friend L, Shrestha B, Higgs S, Engle M (2003c) Induced IgM protects against lethal West Nile virus infection. J Exp Med 198:1–11

    Article  CAS  Google Scholar 

  • Dimmock NJ (1993) Neutralization of animal viruses. Curr Top Microbiol Immunol 183:1–149

    PubMed  CAS  Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2m-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768

    Article  PubMed  CAS  Google Scholar 

  • Elshuber S, Allison SL, Heinz FX, Mandl CW (2003) Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84:183–191

    Article  PubMed  CAS  Google Scholar 

  • Engle M, Diamond MS (2003) Antibody prophylaxis and therapy against West Nile virus infection in wild type and immunodeficient mice. J Virol 77:12941–12949

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen BL, Smith M, Katze MG, Shi PY, Gale M (2004) The host response to West Nile virus infection limits spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78:7737–7747

    Article  PubMed  CAS  Google Scholar 

  • Gollins S, Porterfield J (1984) Flavivirus infection enhancement in macrophages: radioactive and biological studies on the effect of antibody and viral fate. J Gen Virol 65:1261–1272

    Article  PubMed  Google Scholar 

  • Gollins S, Porterfield J (1986a) The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J Gen Virol 67:1941–1950

    Article  PubMed  CAS  Google Scholar 

  • Gollins SW, Porterfield JS (1985) Flavivirus infection enhancement in macrophages: an electron microscopic study of viral entry. J Gen Virol 66:1969–1982

    Article  PubMed  Google Scholar 

  • Gollins SW, Porterfield JS (1986b) A new mechanism for the neutralization of enveloped viruses by antiviral antibody. Nature 321:244–246

    Article  PubMed  CAS  Google Scholar 

  • Goodwin K, Viboud C, Simonsen L (2006) Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Gould EA, Buckley A (1989) Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J Gen Virol 70:1605–1608

    Article  PubMed  Google Scholar 

  • Gould EA, Buckley A, Groeger BK, Cane PA, Doenhoff M (1987) Immune enhancement of yellow fever virus neurovirulence for mice: studies of mechanisms involved. J Gen Virol 68:3105–3112

    Article  PubMed  Google Scholar 

  • Gould LH, Sui J, Foellmer H, Oliphant T, Wang T, Ledizet M, Murakami A, Noonan K, Lambeth C, Kar K, Anderson JF, de Silva AM, Diamond MS, Koski RA, Marasco WA, Fikrig E (2005) Protective and therapeutic capacity of human single chain Fv-Fc fusion proteins against West Nile virus. J Virol 79:14606–14613

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE, Ubol S, Despres P, Kimura T, Byrnes A (2001) Role of antibodies in controlling alphavirus infection of neurons. Curr Top Microbiol Immunol 260:191–200

    PubMed  CAS  Google Scholar 

  • Guirakhoo F, Heinz FX, Kunz C (1989) Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology 169:90–99

    Article  PubMed  CAS  Google Scholar 

  • Guirakhoo F, Bolin RA, Roehrig JT (1992) The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191:921–931

    Article  PubMed  CAS  Google Scholar 

  • Halevy M, Akov Y, Ben-Nathan D, Kobiler D, Lachmi B, Lustig S (1994) Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice. Arch Virol 137:355–370

    Article  PubMed  CAS  Google Scholar 

  • Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239:476–481

    Article  PubMed  CAS  Google Scholar 

  • Halstead SB (1994) Antibody-dependent enhancement of infection: a mechanism for indirect virus entry into cells. In: Cellular receptors for animal viruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 493–516

    Google Scholar 

  • Halstead SB, O’Rourke EJ (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739–741

    Article  PubMed  CAS  Google Scholar 

  • Halstead SB, Venkateshan CN, Gentry MK, Larsen LK (1984) Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J Immunol 132:1529–1532

    PubMed  CAS  Google Scholar 

  • Hamano Y, Arase H, Saisho H, Saito T (2000) Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses. J Immunol 164:6113–6119

    PubMed  CAS  Google Scholar 

  • Hamdan A, Green P, Mendelson E, Kramer MR, Pitlik S, Weinberger M (2002) Possible benefit of intravenous immunoglobulin therapy in a lung transplant recipient with West Nile virus encephalitis. Transpl Infect Dis 4:160–162

    Article  PubMed  CAS  Google Scholar 

  • Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW (2005) N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274

    Article  PubMed  CAS  Google Scholar 

  • Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL (2005a) Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11:1167–1173

    PubMed  Google Scholar 

  • Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL (2005b) Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 11:1174–1179

    PubMed  Google Scholar 

  • Heinz F, Auer G, Stiasny K, Holzmann H, Mandl C, Guirakhoo F, Kunz C (1994a) The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch Virol 9:339–348

    CAS  Google Scholar 

  • Heinz F, Stiasny K, Puschner-Auer G, Holzmann H, Allison S, Mandl C, Kunz C (1994b) Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with the protein prM. Virology 198:109–117

    Article  PubMed  CAS  Google Scholar 

  • Heinz FX, Berger R, Tuma W, Kunz C (1983) A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology 126:525–537

    Article  PubMed  CAS  Google Scholar 

  • Henchal EA, Henchal LS, Thaisomboonsuk BK (1987) Topological mapping of unique epitopes on the dengue-2 virus NS1 protein using monoclonal antibodies. J Gen Virol 68:845–851

    Article  PubMed  CAS  Google Scholar 

  • Henchal EA, Henchal LS, Schlesinger JJ (1988) Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J Gen Virol 69:2101–2107

    Article  PubMed  Google Scholar 

  • Huang CY, Silengo SJ, Whiteman MC, Kinney RM (2005) Chimeric dengue 2 PDK-53/West Nile NY99 viruses retain the phenotypic attenuation markers of the candidate PDK-53 vaccine virus and protect mice against lethal challenge with West Nile virus. J Virol 79:7300–7310

    Article  PubMed  CAS  Google Scholar 

  • Hubalek Z, Halouzka J (1999a) West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650

    Article  PubMed  CAS  Google Scholar 

  • Hubalek Z, Halouzka J, Juricova Z (1999b) West Nile fever in Czechland. Emerg Infect Dis 5:594–595

    Article  PubMed  CAS  Google Scholar 

  • Huhn GD, Austin C, Langkop C, Kelly K, Lucht R, Lampman R, Novak R, Haramis L, Boker R, Smith S, Chudoba M, Gerber S, Conover C, Dworkin MS (2005) The emergence of West Nile virus during a large outbreak in Illinois in 2002. Am J Trop Med Hyg 72:768–776

    PubMed  Google Scholar 

  • Hung SL, Lee PL, Chen HW, Chen LK, Kao CL, King CC (1999) Analysis of the steps involved in Dengue virus entry into host cells. Virology 257:156–167

    Article  PubMed  CAS  Google Scholar 

  • Hunsperger EA, Roehrig JT (2006) Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 12:129–139

    Article  PubMed  CAS  Google Scholar 

  • Iglesias MC, Frenkiel MP, Mollier K, Souque P, Despres P, Charneau P (2006) A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J Gene Med 8:265–274

    Article  PubMed  CAS  Google Scholar 

  • Johnston LJ, Halliday GM, King NJ (1996) Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 70:4761–4766

    PubMed  CAS  Google Scholar 

  • Johnston LJ, Halliday GM, King NJ (2000) Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114:560–568

    Article  PubMed  CAS  Google Scholar 

  • Julander JG, Winger QA, Olsen AL, Day CW, Sidwell RW, Morrey JD (2005) Treatment of West Nile virus-infected mice with reactive immunoglobulin reduces fetal titers and increases dam survival. Antiviral Res 65:79–85

    Article  PubMed  CAS  Google Scholar 

  • Jupp PG (2001) The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann N Y Acad Sci 951:143–152

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80:11000–11008

    Article  PubMed  CAS  Google Scholar 

  • Karaca K, Bowen R, Austgen LE, Teehee M, Siger L, Grosenbaugh D, Loosemore L, Audonnet JC, Nordgren R, Minke JM (2005) Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine 23:3808–3813

    Article  PubMed  CAS  Google Scholar 

  • Kauffman B, Nybakken G, Chipman PR, Zhang W, Fremont DH, Diamond MS, Kuhn RJ, Rossmann MG (2006) West Nile virus in complex with a neutralizing monoclonal antibody. Proc Natl Acad Sci USA 103:12400–12404

    Article  CAS  Google Scholar 

  • Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M Jr (2006) Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol 80:9424–9434

    Article  PubMed  CAS  Google Scholar 

  • Khromykh AA, Sedlak PL, Westaway EG (1999) trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol 73:9247–9255

    PubMed  CAS  Google Scholar 

  • Khromykh AA, Sedlak PL, Westaway EG (2000) cis- and trans-acting elements in flavivirus RNA replication. J Virol 74:3253–3263

    Article  PubMed  CAS  Google Scholar 

  • Kile JC, Panella NA, Komar N, Chow CC, MacNeil A, Robbins B, Bunning ML (2005) Serologic survey of cats and dogs during an epidemic of West Nile virus infection in humans. J Am Vet Med Assoc 226:1349–1353

    Article  PubMed  Google Scholar 

  • Kimura-Kuroda J, Yasui K (1983) Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies. J Virol 45:124–132

    PubMed  CAS  Google Scholar 

  • Kimura-Kuroda J, Yasui K (1988) Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J Immunol 141:3606–3610

    PubMed  CAS  Google Scholar 

  • Kliks S (1990) Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res Hum Retroviruses 6:993–998

    PubMed  CAS  Google Scholar 

  • Kliks SC, Nisalak A, Brandt WE, Wahl L, Burke DS (1989) Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am J Trop Med Hyg 40:444–451

    PubMed  CAS  Google Scholar 

  • Komar N, Clark GG (2006) West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica 19:112–117

    Article  PubMed  Google Scholar 

  • Konishi E, Pincus S, Paoletti E, Shope RE, Burrage T, Mason PW (1992) Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188:714–720

    Article  PubMed  CAS  Google Scholar 

  • Kreil TR, Eibl MM (1997) Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J Virol 71:2921–2927

    PubMed  CAS  Google Scholar 

  • Kroeger MA, McMinn PC (2002) Murray Valley encephalitis virus recombinant subviral particles protect mice from lethal challenge with virulent wild-type virus. Arch Virol 147:1155–1172

    Article  PubMed  CAS  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Article  PubMed  CAS  Google Scholar 

  • Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT (2002) Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96–105

    Article  PubMed  CAS  Google Scholar 

  • Ledizet M, Kar K, Foellmer HG, Wang T, Bushmich SL, Anderson JF, Fikrig E, Koski RA (2005) A recombinant envelope protein vaccine against West Nile virus. Vaccine 23:3915–3924

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE (1991) Antibody-mediated clearance of alphavirus infection from neurons. Science 254:856–860

    Article  PubMed  CAS  Google Scholar 

  • Lim JK, Glass WG, McDermott DH, Murphy PM (2006) CCR5: no longer a “good for nothing” gene—chemokine control of West Nile virus infection. Trends Immunol 27:308–312

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Parrish CR, Murray JM, Wright PJ (1994) Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology 202:885–890

    Article  PubMed  CAS  Google Scholar 

  • Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL (2006) Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80:5908–5918

    Article  PubMed  CAS  Google Scholar 

  • Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621

    PubMed  CAS  Google Scholar 

  • Lindenbach BD, Rice CM (2001) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 991–1041

    Google Scholar 

  • Liu WJ, Chen HB, Khromykh AA (2003) Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J Virol 77:7804–7813

    Article  PubMed  CAS  Google Scholar 

  • Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA (2004) Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 78:12225–12235

    Article  PubMed  CAS  Google Scholar 

  • Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA (2005) Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol 79:1934–1942

    Article  PubMed  CAS  Google Scholar 

  • Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80:2396–2404

    Article  PubMed  CAS  Google Scholar 

  • Lucas M, Mashimo T, Frenkiel MP, Simon-Chazottes D, Montagutelli X, Ceccaldi PE, Guenet JL, Despres P (2003) Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2i–5- oligoadenylate synthetase 1b protein. Immunol Cell Biol 81:230–236

    Article  PubMed  CAS  Google Scholar 

  • Lustig S, Olshevsky U, Ben-Nathan D, Lachmi BE, Malkinson M, Kobiler D, Halevy M (2000) A live attenuated West Nile virus strain as a potential veterinary vaccine. Viral Immunol 13:401–410

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie JM, Westaway EG (2001) Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75:10787–10799

    Article  PubMed  CAS  Google Scholar 

  • Malkinson M, Banet C, Khinich Y, Samina I, Pokamunski S, Weisman Y (2001) Use of live and inactivated vaccines in the control of West Nile fever in domestic geese. Ann N Y Acad Sci 951:255–261

    Article  PubMed  CAS  Google Scholar 

  • Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel MP, Montagutelli X, Ceccaldi PE, Deubel V, Guenet JL, Despres P (2002) A nonsense mutation in the gene encoding 2M–5–oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad Sci USA 99:11311–11316

    Article  PubMed  CAS  Google Scholar 

  • Mason PW, Dalrymple JM, Gentry MK, McCown JM, Hoke CH, Burke DS, Fournier MJ, Mason TL (1989) Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J Gen Virol 70:2037–2049

    Article  PubMed  CAS  Google Scholar 

  • Megret F, Hugnot JP, Falconar A, Gentry MK, Morens DM, Murray JM, Schlesinger JJ, Wright PJ, Young P, Van Regenmortel MH, et al (1992) Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue virus envelope glycoprotein. Virology 187:480–491

    Article  PubMed  CAS  Google Scholar 

  • Mehlhop E, Diamond MS (2006) Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J Exp Med 203:1371–1381

    Article  PubMed  CAS  Google Scholar 

  • Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS (2005) Complement activation is required for the induction of a protective antibody response against West Nile virus infection. J Virol 79:7466–7477

    Article  PubMed  CAS  Google Scholar 

  • Miller DL, Mauel MJ, Baldwin C, Burtle G, Ingram D, Hines ME, 2nd Frazier KS (2003) West Nile virus in farmed alligators. Emerg Infect Dis 9:794–799

    PubMed  Google Scholar 

  • Minke JM, Siger L, Karaca K, Austgen L, Gordy P, Bowen R, Renshaw RW, Loosmore S, Audonnet JC, Nordgren B (2004) Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch Virol Suppl 221–230

    Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    Article  PubMed  CAS  Google Scholar 

  • Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Monath TP (2001) Prospects for development of a vaccine against the West Nile virus. Ann NY Acad Sci 951:1–12

    PubMed  CAS  Google Scholar 

  • Monath TP, Liu J, Kanesa-Thasan N, Myers GA, Nichols R, Deary A, McCarthy K, Johnson C, Ermak T, Shin S, Arroyo J, Guirakhoo F, Kennedy JS, Ennis FA, Green S, Bedford P (2006) A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci USA 103:6694–6699

    Article  PubMed  CAS  Google Scholar 

  • Morens DM (1994) Antibody-dependent of enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 19:500–512

    PubMed  CAS  Google Scholar 

  • Morrey JD, Siddharthan V, Olsen AL, Roper GY, Wang H, Baldwin TJ, Koenig S, Johnson S, Nordstrom JL, Diamond MS (2006) Humanized monoclonal antibody against West Nile virus E protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis 194:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Mostashari F, Bunning ML, Kitsutani PT, Singer DA, Nash D, Cooper MJ, Katz N, Liljebjelke KA, Biggerstaff BJ, Fine AD, Layton MC, Mullin SM, Johnson AJ, Martin DA, Hayes EB, Campbell GL (2001) Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358:261–264

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302:248

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, Lipkin WI, Garcia-Sastre A (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79:8004–8013

    Article  PubMed  CAS  Google Scholar 

  • Murphy BR, Blaney JE Jr, Whitehead SS (2004) Arguments for live flavivirus vaccines. Lancet 364:499–500

    Article  PubMed  Google Scholar 

  • Ng T, Hathaway D, Jennings N, Champ D, Chiang YW, Chu HJ (2003) Equine vaccine for West Nile virus. Dev Biol (Basel) 114:221–227

    CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24:19–28

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV (2005) FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23:41–51

    Article  PubMed  CAS  Google Scholar 

  • Nowak T, Farber PM, Wengler G (1989) Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169:365–376

    Article  PubMed  CAS  Google Scholar 

  • Nybakken G, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis for neutralization of a therapeutic antibody against West Nile virus. Nature 437:764–769

    Article  PubMed  CAS  Google Scholar 

  • Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH (2006) Crystal structure of the West Nile virus envelope glycoprotein. J Virol 80:11467–11474

    Article  PubMed  CAS  Google Scholar 

  • Oliphant T, Engle M, Nybakken G, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530

    Article  PubMed  CAS  Google Scholar 

  • Oliphant T, Nybakken G, Engle M, Xu, Q, Nelson CA, Sukupolvi-Petty S, Marri A, Lachmi B, Olshevsky U, Fremont DH, Pierson TC, Diamond MS (2006) Determinants of West Nile virus envelope protein domains I and II antibody recognition and neutralization. J Virol 80:12149–12159

    Article  PubMed  CAS  Google Scholar 

  • Parren PW, Burton DR (2001) The antiviral activity of antibodies in vitro and in vivo. Adv Immunol 77:195–262

    Article  PubMed  CAS  Google Scholar 

  • Peiris JS, Porterfield JS (1979) Antibody-mediated enhancement of flavivirus replication in macrophage-like cell lines. Nature 282:509–511

    Article  PubMed  CAS  Google Scholar 

  • Peiris JS, Gordon S, Unkeless JC, Porterfield JS (1981) Monoclonal anti-Fc receptor IgG blocks antibody-dependent enhancement of viral replication in macrophages. Nature 289:189–191

    Article  PubMed  CAS  Google Scholar 

  • Peiris JS, Porterfield JS, Roehrig JT (1982) Monoclonal antibodies against the flavivirus West Nile. J Gen Virol 58:283–289

    Article  PubMed  CAS  Google Scholar 

  • Perelygin AA, Scherbik SV, Zhulin IB, Stockman BM, Li Y, Brinton MA (2002) Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad Sci USA 99:9322–9327

    Article  PubMed  CAS  Google Scholar 

  • Petersen LR, Marfin AA, Gubler DJ (2003) West Nile virus. JAMA 290:524–528

    Article  PubMed  Google Scholar 

  • Pletnev AG, Putnak R, Speicher J, Wagar EJ, Vaughn DW (2002) West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy. Proc Natl Acad Sci USA 99:3036–3041

    Article  PubMed  CAS  Google Scholar 

  • Pletnev AG, Swayne DE, Speicher J, Rumyantsev AA, Murphy BR (2006) Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine 24:6392–6404

    Article  PubMed  CAS  Google Scholar 

  • Qiao M, Ashok M, Bernard KA, Palacios G, Zhou ZH, Lipkin WI, Liang TJ (2004) Induction of sterilizing immunity against West Nile virus (WNV), by immunization with WNV-like particles produced in insect cells. J Infect Dis 190:2104–2108

    Article  PubMed  Google Scholar 

  • Razumov IA, Kazachinskaia EI, Ternovoi VA, Protopopova EV, Galkina IV, Gromashevskii VL, Prilipov AG, Kachko AV, Ivanova AV, L’vov DK, Loktev VB (2005) Neutralizing monoclonal antibodies against Russian strain of the West Nile virus. Viral Immunol 18:558–568

    Article  PubMed  CAS  Google Scholar 

  • Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S (1999) Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380

    Article  PubMed  CAS  Google Scholar 

  • Rey FA (2003) Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proc Natl Acad Sci USA 100:6899–6901

    Article  PubMed  CAS  Google Scholar 

  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2-angstrom resolution. Nature 375:291–298

    Article  PubMed  CAS  Google Scholar 

  • Roehrig JT, Johnson AJ, Hunt AR, Bolin RA, Chu MC (1990) Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 177:668–675

    Article  PubMed  CAS  Google Scholar 

  • Roehrig JT, Bolin RA, Kelly RG (1998) Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246:317–328

    Article  PubMed  CAS  Google Scholar 

  • Roehrig JT, Staudinger LA, Hunt AR, Mathews JH, Blair CD (2001) Antibody prophylaxis and therapy for flaviviral encephalitis infections. Ann NY Acad Sci 951:286–297

    PubMed  CAS  Google Scholar 

  • Samuel MA, Diamond MS (2005) Type I IFN protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79:13350–13361

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Diamond MS (2006a) Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80:9349–9360

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, Diamond MS (2006b) PKR and RNAse L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 80:7009–7019

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MD, Pierson TC, McAllister D, Hanna SL, Puffer BA, Valentine LE, Murtadha MM, Hoxie JA, Doms RW (2005) Characterization of neutralizing antibodies to West Nile virus. Virology 336:70–82

    Article  PubMed  CAS  Google Scholar 

  • Sawyer LA (2000) Antibodies for the prevention and treatment of viral diseases. Antiviral Res 47:57–77

    Article  PubMed  CAS  Google Scholar 

  • Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA (2006) RNase L plays a role in the antiviral response to West Nile virus. J Virol 80:2987–2999

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger JJ, Chapman S (1995) Neutralizing F(abS) 2 fragments of protective monoclonal antibodies to yellow fever virus (YF) envelope protein fail to protect mice against lethal YF encephalitis. J Gen Virol 76:217–220

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger JJ, Brandriss MW, Walsh EE (1985) Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J Immunol 135:2805–2809

    PubMed  CAS  Google Scholar 

  • Schlesinger JJ, Foltzer M, Chapman S (1993) The Fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology 192:132–141

    Article  PubMed  CAS  Google Scholar 

  • Se-Thoe SY, Ling AE, Ng MM (2000) Alteration of virus entry mode: a neutralisation mechanism for Dengue-2 virus. J Med Virol 62:364–376

    Article  PubMed  CAS  Google Scholar 

  • Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, Fleischauer A, Leis AA, Stokic DS, Petersen LR (2003) Neurologic manifestations and outcome of West Nile virus infection. JAMA 290:511–515

    Article  PubMed  Google Scholar 

  • Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Pape J, Biggerstaff BJ, Petersen LR (2006) West Nile Virus-associated flaccid paralysis outcome. Emerg Infect Dis 12:514–516

    PubMed  Google Scholar 

  • Seligman SJ, Gould EA (2004) Live flavivirus vaccines: reasons for caution. Lancet 363:2073–2075

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Z, Niven MJ, Pitlick S, Bulvik S (2001) Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg Infect Dis 7:759

    Article  PubMed  CAS  Google Scholar 

  • Shirato K, Miyoshi H, Goto A, Ako Y, Ueki T, Kariwa H, Takashima I (2004) Viral envelope protein glycosylation is a molecular determinant of the nueroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Diamond MS (2004) The role of CD8+ T cells in the control of West Nile virus infection. J Virol 78:8312–8321

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Gottlieb DI, Diamond MS (2003) Infection and injury of neurons by West Nile encephalitis virus. J Virol 77:13203–13213

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Samuel MA, Diamond MS (2006a) CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol 80:119–129

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006b) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80:5338–5348

    Article  PubMed  CAS  Google Scholar 

  • Sitati E, Diamond MS (2006) CD4+ T Cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80:12060–12069

    Article  PubMed  CAS  Google Scholar 

  • Sitati E, McCandless EE, Klein RS, Diamond MS (2007) CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. J Virol. In press

    Google Scholar 

  • Smithburn KC, Hughes TP, Burke AW, Paul JH (1940) A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20:471–492

    Google Scholar 

  • Stadler K, Allison SL, Schalich J, Heinz FX (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481

    PubMed  CAS  Google Scholar 

  • Stiasny K, Kiermayr S, Holzmann H, Heinz FX (2006) Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80:9557–9568

    Article  PubMed  CAS  Google Scholar 

  • Tesh RB, Arroyo J, Travassos Da Rosa AP, Guzman H, Xiao SY, Monath TP (2002) Efficacy of killed virus vaccine, live attenuated chimeric virus vaccine, and passive immunization for prevention of West Nile virus encephalitis in hamster model. Emerg Infect Dis 8:1392–1397

    Article  PubMed  Google Scholar 

  • Throsby M, Geuijen C, Goudsmit J, Bakker AQ, Korimbocus J, Kramer RA, Clijsters-van der Horst M, de Jong M, Jongeneelen M, Thijsse S, Smit R, Visser TJ, Bijl N, Marissen WE, Loeb M, Kelvin DJ, Preiser W, ter Meulen J, de Kruif J (2006) Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile virus. J Virol 80:6982–6992

    Article  CAS  Google Scholar 

  • Tsai TF, Popovici F, Cernescu C, Campbell GL, Nedelcu NI (1998) West Nile encephalitis epidemic in southeastern Romania. Lancet 352:767–771

    Article  PubMed  CAS  Google Scholar 

  • Valdes K, Alvarez M, Pupo M, Vazquez S, Rodriguez R, Guzman MG (2000) Human dengue antibodies against structural and nonstructural proteins. Clin Diagn Lab Immunol 7:856–857

    PubMed  CAS  Google Scholar 

  • Vazquez S, Guzman MG, Guillen G, Chinea G, Perez AB, Pupo M, Rodriguez R, Reyes O, Garay HE, Delgado I, Garcia G, Alvarez M (2002) Immune response to synthetic peptides of dengue prM protein. Vaccine 20:1823–1830

    Article  PubMed  CAS  Google Scholar 

  • Volk DE, Beasley DW, Kallick DA, Holbrook MR, Barrett AD, Gorenstein DG (2004) Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. J Biol Chem 279:38755–38761

    Article  PubMed  CAS  Google Scholar 

  • Wallace MJ, Smith DW, Broom AK, Mackenzie JS, Hall RA, Shellam GR, McMinn PC (2003) Antibody-dependent enhancement of Murray Valley encephalitis virus virulence in mice. J Gen Virol 84:1723–1728

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Fikrig E (2004a) Immunity to West Nile virus. Curr Opin Immunol 16:519–523

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Anderson JF, Magnarelli LA, Wong SJ, Koski RA, Fikrig E (2001) Immunization of mice against West Nile virus with recombinant envelope protein. J Immunol 167:5273–5277

    PubMed  CAS  Google Scholar 

  • Wang T, Scully E, Yin Z, Kim JH, Wang S, Yan J, Mamula M, Anderson JF, Craft J, Fikrig E (2003a) IFN-W-producing–T cells help control murine West Nile virus infection. J Immunol 171:2524–2531

    PubMed  CAS  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004b) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lobigs M, Lee E, Mullbacher A (2003b) CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 77:13323–13334

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lobigs M, Lee E, Mullbacher A (2004c) Exocytosis and Fas mediated cytolytic mechanisms exert protection from West Nile virus induced encephalitis in mice. Immunol Cell Biol 82:170–173

    Article  PubMed  CAS  Google Scholar 

  • Watts DM, Tesh RB, Siirin M, Rosa AT, Newman PC, Clements DE, Ogata S, Coller BA, Weeks-Levy C, Lieberman MM (2006) Efficacy and durability of a recombinant subunit West Nile vaccine candidate in protecting hamsters from West Nile encephalitis. Vaccine 25:2913–2918

    Article  PubMed  CAS  Google Scholar 

  • Wengler G (1989) Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63:2521–2526

    PubMed  CAS  Google Scholar 

  • Winkler G, Randolph VB, Cleaves GR, Ryan TE, Stollar V (1988) Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology 162:187–196

    Article  PubMed  CAS  Google Scholar 

  • Winkler G, Maxwell SE, Ruemmler C, Stollar V (1989) Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology 171:302–305

    Article  PubMed  CAS  Google Scholar 

  • Wong SJ, Boyle RH, Demarest VL, Woodmansee AN, Kramer LD, Li H, Drebot M, Koski RA, Fikrig E, Martin DA, Shi PY (2003) Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol 41:4217–4223

    Article  PubMed  CAS  Google Scholar 

  • Wu KP, Wu CW, Tsao YP, Kuo TW, Lou YC, Lin CW, Wu, SC, Cheng JW (2003) Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese Encephalitis virus envelope protein. J Biol Chem 278:46007–46013

    Article  PubMed  CAS  Google Scholar 

  • Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB (2001) West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7:714–721

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Kim JJ, Hwang D, Choo AY, Dang K, Maguire H, Kudchodkar S, Ramanathan MP, Weiner DB (2001) Induction of potent Th1-type immune responses from a novel DNA vaccine for West Nile virus New York isolate (WNV-NY1999). J Infect Dis 184:809–816

    Article  PubMed  CAS  Google Scholar 

  • Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Cone RA, Whaley KJ (1999) Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases. Emerg Infect Dis 5:54–64

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ (2003a) Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG (2003b) Structures of immature flavivirus particles. EMBO J 22:2604–2613

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG (2004) Conformational changes of the flavivirus E glycoprotein. Structure (Camb) 12:1607–1618

    Article  CAS  Google Scholar 

  • Zinkernagel RM, LaMarre A, Ciurea A, Hunziker L, Ochsenbein AF, McCoy KD, Fehr T, Bachmann MF, Kalinke U, Hengartner H (2001) Neutralizing antiviral antibody responses. Adv Immunol 79:1–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diamond, M.S., Mehlhop, E. (2008). The Molecular Basis of Antibody Protection Against West Nile Virus. In: Dessain, S.K. (eds) Human Antibody Therapeutics for Viral Disease. Current Topics in Microbiology and Immunology, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72146-8_5

Download citation

Publish with us

Policies and ethics