On Valid and Invalid Three-Dimensional Geometries

  • Baris M. Kazar
  • Ravi Kothuri
  • Peter van Oosterom
  • Siva Ravada
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Advances in storage management and visualization tools have expanded the frontiers of traditional 2D domains like GIS to 3Dimensions. Recent proposals such as CityGML and associated gateways bridge a long-standing gap between the terrestrial models from the GIS and the CAD/CAM worlds and shift the focus from 2D to 3D. As a result, efficient and scalable techniques for storage, validation and query of 3D models will become a key to terrestrial data management. In this paper, we focus on the problem of validation of 3D geometries. First we present Oracle’s data model for storing 3D geometries (following the general OGC/ISO GML3 specifications). Then, we define more specific and refined rules for valid geometries in this model. We show that the solid representation is simpler and easier to validate than the GML model but still retains the representative power. Finally, we present explicit examples of valid and invalid geometries. This work should make it to easy to conceptualize valid and invalid 3D geometries.


Outer Boundary Outer Ring Composite Surface Open Geospatial Consortium Interior Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Oracle07]
    ‘Validation Rules and Algorithms for 3D Geoemtries in Oracle Spatial’, 2007.Google Scholar
  2. [ASO05]
    Calin Arens, Jantien Stoter and Peter van Oosterom, Modelling 3D spatial objects in a geo-DBMS using a 3D primitive, In: Computers & Geosciences, Volume 31,2, 2005, pp. 165–177.CrossRefGoogle Scholar
  3. [A94]
    Lars Arge, Mark de Berg, Herman J. Haverkort, Ke Yi: The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree. SIGMOD Conference 2004: 347–358.Google Scholar
  4. [BKSS90]
    Beckmann, N., Kriegel, H., Schneider, R. and Seeger, B., The R* tree: An efficient and robust access method for points and rectangles. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 322–331, 1990.Google Scholar
  5. [BKS94]
    Brinkhof, T., Kriegel, H., and Seeger, B., Efficient processing of spatial joins using R-trees. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 237–246, 1994.Google Scholar
  6. [BDA04]
    Nagender Bandi, Chengyu Sun, Amr El Abbadi, Divyakant Agrawal: Hardware Acceleration in Commercial Databases: A Case Study of Spatial Operations. VLDB 2004: 1021–1032.Google Scholar
  7. [DE94]
    Dimitris Papadias, Yannis Theodoridis, Timos K. Sellis, Max J. Egenhofer: Topological Relations in the World of Minimum Bounding Rectangles: A Study with R-trees. SIGMOD Conference 1995: 92–103.Google Scholar
  8. [FD97]
    Foley, van Dam, Feiner, Hughes. Computer Graphics: Principles and Practice, The Systems Programming Series, 1997.Google Scholar
  9. [G84]
    A. Guttman. R-trees: A dynamic index structure for spatial searching. Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 4757, 1984.Google Scholar
  10. [GML03]
    The Geographic Markup Language Specification. Version 3.1.1,
  11. [GSAM04]
    Thanaa M. Ghanem, Rahul Shah, Mohamed F. Mokbel, Walid G. Aref, Jeffrey Scott Vitter: Bulk Operations for Space-Partitioning Trees. ICDE 2004.Google Scholar
  12. [HKV02]
    Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, Dimitrios Gunopulos: Efficient Indexing of Spatiotemporal Objects. EDBT 2002: 251–268.Google Scholar
  13. [ISO03]
    ISO/TC 211/WG 2, ISO/CD 19107, Geographic information-Spatial schema, 2003.Google Scholar
  14. [J04]
    Christian S. Jensen: Database Aspects of Location-Based Services. Location-Based Services 2004: 115–148.Google Scholar
  15. [KGP05]
    Th. H. Kolbe, G. Gröger, L. Plümer. CityGML: Interoperable Access to 3D City Models, In: Oosterom, P, Zlatanova, S., Fendel E. M. (editors) Geo-information for Disaster Management, Springer, pages 883–899, 2005.Google Scholar
  16. [KAE04]
    Kothuri, R. Godfrind A, Beinat E. ‘Pro Oracle Spatial’, Apress, 2004.Google Scholar
  17. [KSSB99]
    Kothuri R., Ravada S., Sharma J., and Banerjee J., Indexing medium dimentionality data, in Proc. ACM SIGMOD Int. Conf. On Management of Data, 1999.Google Scholar
  18. [KR01]
    Kothuri, R., Ravada, S., Efficient processing of large spatial queries using interior approximations, Symposium on Spatio-Temporal Databases, SSTD, 2001.Google Scholar
  19. [L07]
    Jung-Rae Hwang, Ji-Hyeon Oh, Ki-Joune Li: Query Transformation Method by Dalaunay Triangulation for Multi-Source Distributed Spatial Database Systems. ACM-GIS 2001: 41–46.Google Scholar
  20. [MP01]
    Nick Mamoulis, Dimitris Papadias: Multi-way Spatial Joins, ACM TODS, Vol 26, No. 4, pp 424–475, 2001.CrossRefGoogle Scholar
  21. [MTP05]
    Nikos Mamoulis, Yannis Theodoridis, Dimitris Papadias: Spatial Joins: Algorithms, Cost Models and Optimization Techniques. Spatial Databases 2005: 155–184Google Scholar
  22. [MA04]
    Mohamed F. Mokbel, Ming Lu, Walid G. Aref: Hash-Merge Join: A Non-blocking Join Algorithm for Producing Fast and Early Join Results. ICDE 2004: 251–263.Google Scholar
  23. [M97]
    Mortenson, M. Geometric Modelling, second ed. Wiley, New York 523pp., 1997.Google Scholar
  24. [OGC99]
    Open GIS Consortium, Inc., OpenGIS Simple Features Specification For SQL, Revision 1.1, OpenGIS Project Document 99-049, 5 May 1999.Google Scholar
  25. [OGC06a]
    Open Geospatial Consortium Inc., OpenGIS Implementation Specification for Geographic information-Simple feature access-Part 1: Common architecture, Version: 1.2.0, Reference number of this document: OGC OGC 06-103r3, 2006.Google Scholar
  26. [OGC06b]
    Open Geospatial Consortium Inc., OpenGIS Implementation Specification for Geographic information-Simple feature access-Part 2: SQL option, Version: 1.2.0, Reference number of this document: OGC 06-104r3, 2006.Google Scholar
  27. [OGC06c]
    Open Geospatial Consortium Inc., Candidate OpenGIS CityGML Implementation Specification, Reference number of this document: OGC 06-057r1, 2006.Google Scholar
  28. [POK06]
    Penninga, F., van Oosterom, P. & Kazar, B. M., A TEN-based DBMS approach for 3D Topographic Data Modelling, in Spatial Data Handling 2006.Google Scholar
  29. [S89]
    H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1989.Google Scholar
  30. [SE02]
    Schneider J. P., and Eberly, D.H. Geometric Tools for Computer Graphics, Morgan Kaufman, 2002.Google Scholar
  31. [TS96]
    Y. Theodoridis and T. K. Sellis, A model for the prediction of r-tree performance, In Proc. of ACM Symp. on Principles of Databases, 1996.Google Scholar
  32. [OT03]
    P.J.M. van Oosterom, C.W. Quak and T.P.M. Tijssen, Polygons: the unstable foundation of spatial modeling, ISPRS Joint Workshop on’ spatial, Temporal and Multi-Dimensional Data Modelling and Analysis’, Québec, October 2003.Google Scholar
  33. [OT04]
    P.J.M. van Oosterom, C.W. Quak and T.P.M. Tijssen, About Invalid, Valid and Clean Polygons. In: Peter F. Fisher (Ed.); Developments in Spatial Data Handling, 11th International Symposium on Spatial Data Handling, 2004, pp. 1–16Google Scholar
  34. [YE06]
    Yohei Kurata, Max J. Egenhofer: The Head-Body-Tail Intersection for Spatial Relations Between Directed Line Segments. GIScience 2006: 269–286 2005.Google Scholar
  35. [YS05]
    Jin Soung Yoo, Shashi Shekhar: In-Route Nearest Neighbor Queries. GeoInformatica 9(2): 117–137 (2005).CrossRefGoogle Scholar
  36. [Z00]
    Zlatanova, S. On 3D Topological Relationships, DEXA Workshop, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Baris M. Kazar
    • 1
  • Ravi Kothuri
    • 1
  • Peter van Oosterom
    • 2
  • Siva Ravada
    • 1
  1. 1.Oracle USA, Inc.NashuaUSA
  2. 2.OTB, section GIS TechnologyDelft University of Technologythe Netherlands

Personalised recommendations