Generalizing the Concept of Negative Medium to Acoustic Waves

  • Jensen Li
  • K. H. Fung
  • Z. Y. Liu
  • Ping Sheng
  • Che Ting Chan
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

Electromagnetic metamaterials are artificial materials exhibiting simultaneously negative permeability and permittivity, and the “double negativity” gives rise to many interesting phenomena such as negative refraction, backward waves and superlensing effects. We will see that the concept can be extended to acoustic waves. We will show the existence of acoustic metamaterial, in which both the effective density and bulk modulus are simultaneously negative at some particular frequency range, in the sense of an effective medium. Such a double negative acoustic system is an acoustic analog of Veselogo’s medium in electromagnetism, and shares many novel consequences such as negative refractive index, flat slab focusing and super-resolution. The double negativity in acoustics is derived from low frequency resonances, as in the case of electromagnetism, but the negative density and modulus can come from a single resonance structure, as distinct from electromagnetism in which the negative permeability and negative permittivity originates from different resonance mechanisms.


Acoustic Wave Bulk Modulus Evanescent Wave Colloidal Crystal Negative Refraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.C. Veselago, Sov. Phys. Usp. 10, 509 (1968).CrossRefADSGoogle Scholar
  2. 2.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004).CrossRefADSGoogle Scholar
  3. 3.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  4. 4. J.B. Pendry, A.J. Holden, D.J. Robins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).Google Scholar
  5. 5.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  6. 6.
    J. Li, C.T. Chan, Phys. Rev. E 70, 055602 (2004).CrossRefADSGoogle Scholar
  7. 7.
    Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).zbMATHCrossRefADSGoogle Scholar
  8. 8.
    J.G. Berryman, J. Acoust. Soc. Am. 68, 1809 (1980).zbMATHGoogle Scholar
  9. 9.
    G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).ADSGoogle Scholar
  10. 10.
    J.H. Page, A. Sukhovich, S. Yang, M.L. Cowan, F. Van Der Biest, A. Tourin, M. Fing, Z. Liu, C.T. Chan, P. Sheng, Phys. Status Solidi B 241, 3454 (2004).CrossRefADSGoogle Scholar
  11. 11.
    For an introduction to photonic crystal, see, e.g., J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).Google Scholar
  12. 12.
    S. Yang, J.H. Page, Z.Y. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).CrossRefADSGoogle Scholar
  13. 13.
    X. Zhang, Z.Y. Liu, Appl. Phys. Lett. 85, 341 (2004).CrossRefADSGoogle Scholar
  14. 14.
    L. Feng, X.P. Liu, M.H. Lu, Y.B. Chen, Y.F. Chen, Y.W. Mao, J. Zi, Y.Y. Zhu, S.N. Zhu, N.B. Ming, Phys. Rev. Lett. 96, 14301 (2006).CrossRefADSGoogle Scholar
  15. 15.
    See, e.g., C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B. 65,201104(R) (2002).CrossRefADSGoogle Scholar
  16. 16.
    See, e.g., N.W. Ashcroft, N.D. Mermin, Solid State Physics(Saunders, Philadelphia, 1976).Google Scholar
  17. 17.
    Z.Y. Liu, X.X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Science. 289, 1641( 2000).Google Scholar
  18. 18.
    Z.Y. Liu, C.T. Chan, P. Sheng, A.L. Goertzen, J.H. Page, Phys. Rev. B 62, 2446(2000).CrossRefADSGoogle Scholar
  19. 19.
    Z.Y. Liu, C.T. Chan, P. Sheng, Phys. Rev. B 65, 165116 (2002).CrossRefADSGoogle Scholar
  20. 20.
    K.H. Fung, Z.Y. Liu, C.T. Chan, Zeitschrift Fur Kristallographie 220, 871. (2005).CrossRefGoogle Scholar
  21. 21.
    See, e.g., A.L. Fetter, J.D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, New York, 1980).zbMATHGoogle Scholar
  22. 22.
    J.E. Sipe, J. Van Kranendonk, Phys. Rev. A 9, 1806 (1974).CrossRefADSGoogle Scholar
  23. 23.
    S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003).zbMATHGoogle Scholar
  24. 24.
    L. Tsang, J.A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).CrossRefGoogle Scholar
  25. 25.
    M. Kafeski, E.N. Economou, Phys. Rev. B 60, 1 (1993).Google Scholar
  26. 26.
    E. Psarobas, A. Modinos, R. Sainidou, N. Stefanou, Phys. Rev. B 65, 064307. (2002).CrossRefADSGoogle Scholar
  27. 27.
    D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).CrossRefADSGoogle Scholar
  28. 28.
    L. Zhou, C.T. Chan, Appl. Phys. Lett. 86, 101104 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jensen Li
    • 1
  • K. H. Fung
    • 1
  • Z. Y. Liu
    • 2
  • Ping Sheng
    • 1
  • Che Ting Chan
    • 1
  1. 1.Physics DepartmentHong Kong University of Science and TechnologyClear Water BayChina
  2. 2.Physics DepartmentWuhan UniversityChina

Personalised recommendations