Advertisement

Negative Refraction and Imaging with Quasicrystals

  • Xiangdong Zhang
  • Zhifang Feng
  • Yiquan Wang
  • Zhi-Yuan Li
  • Bingying Cheng
  • Dao-Zhong Zhang
Chapter
  • 1.4k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

Recently, negative refraction of electromagnetic waves in photonic crystals was demonstrated experimentally and subwavelength images were observed. However, these investigations all focused on the periodic structure. In fact, the negative refraction exists not only in periodic structure, but also in nonperiodic structures such as quasicrystalline arrangement of dielectric. Here, we discuss the negative refraction and imaging based on some transparent quasicrystalline photonic structures. The high-symmetric photonic quasicrystals (PQCs) can exhibit an effective refractive index close to -1 in a certain frequency window. The index shows small spatial dispersion, consistent with the nearly homogeneous geometry of the quasicrystal. Thus, a flat lens based on the 2D PQCs can form a non-near-field image whose position varies with the thickness of the sample and the source distance. At the same time, the focus and image for both polarized waves at the same structure and parameters can also be realized by such a flat lens. In addition, the negative refraction behaviors of acoustic wave in phononic quasicrystal are also discussed.

Keywords

Photonic Crystal Evanescent Wave Negative Refraction Negative Refractive Index Photonic Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).CrossRefADSGoogle Scholar
  2. 2.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  3. 3.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  4. 4.
    D.R. Smith, W.J. Padilla, D.C. View, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000); D.R. Smith, N. Kroll, Phys. Rev. Lett. 84, 2933 (2000).CrossRefADSGoogle Scholar
  5. 5.
    P. Markos, C.M. Soukoulis, Phys. Rev. E 65, 036622 (2002); Phys. Rev. B 65, 033401 (2002).CrossRefADSGoogle Scholar
  6. 6.
    J. Pacheco Jr., T.M. Grzegorczyk, B.L. Wu, Y. Zhang, J.A. Kong, Phys. Rev. Lett. 89, 257401 (2002).CrossRefADSGoogle Scholar
  7. 7.
    R. Marques, J. Martel, F. Mesa, F. Medina, Phys. Rev. Lett. 89, 183901 (2002).CrossRefADSGoogle Scholar
  8. 8.
    S. Foteinopoulou, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 90, 107402. (2003).CrossRefADSGoogle Scholar
  9. 9.
    D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).CrossRefADSGoogle Scholar
  10. 10.
    A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).CrossRefADSGoogle Scholar
  11. 11.
    C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).CrossRefADSGoogle Scholar
  12. 12.
    A. Grbic, G.V. Eleftheriades, Phys. Rev. Lett. 92, 117403 (2004).CrossRefADSGoogle Scholar
  13. 13.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Phys. Rev. B 58, 10096 (1998).CrossRefADSGoogle Scholar
  14. 14.
    M. Notomi, Phys. Rev. B 62, 10696 (2000).CrossRefADSGoogle Scholar
  15. 15.
    B. Gralak, S. Enoch, G. Tayeb, J. Opt. Soc. Am. A 17, 1012 (2000).CrossRefADSGoogle Scholar
  16. 16.
    S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. B 67, 235107 (2003).CrossRefADSGoogle Scholar
  17. 17.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104 (2002); Opt. Express 11, 746 (2003); C. Luo, S.G. Johnson, J.D. Joannopoulos, Appl. Phys. Lett. 83, 2352 (2002).CrossRefADSGoogle Scholar
  18. 18.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 68, 045115. (2003).CrossRefADSGoogle Scholar
  19. 19.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature. (London) 423, 604 (2003).CrossRefADSGoogle Scholar
  20. 20.
    P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003).CrossRefADSGoogle Scholar
  21. 21.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).CrossRefADSGoogle Scholar
  22. 22.
    Z.Y. Li, L.L. Lin, Phys. Rev. B 68, 245110 (2003).CrossRefADSGoogle Scholar
  23. 23.
    X. Zhang, Phys. Rev. B 70, 205102 (2004); Appl. Phys. Lett. 86, 121103 (2005).CrossRefADSGoogle Scholar
  24. 24.
    S.L. He, Z.C. Ruan, L. Chen, J. Shen, Phys. Rev. B 70, 115113 (2004).CrossRefADSGoogle Scholar
  25. 25.
    P. Belov, C. Simovski, P. Ikonen, Phys. Rev. B 71, 193105 (2005).CrossRefADSGoogle Scholar
  26. 26.
    X. Wang, Z.F. Ren, K. Kempa, Opt. Express 12, 2919 (2004); Phys. Rev. B 71, 085101 (2005).CrossRefADSGoogle Scholar
  27. 27.
    X. Hu, C.T. Chan, Appl. Phys. Lett. 85, 1520 (2004).CrossRefADSGoogle Scholar
  28. 28.
    X. Zhang, Phys. Rev. B 70, 195110 (2004); Phys. Rev. B 71, 235103 (2005); Phys. Rev. E 71, 037601 (2005); Phys. Rev. B 71, 165116 (2005).CrossRefADSGoogle Scholar
  29. 29.
    A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, S. Anand, Phys. Rev. Lett. 93, 073902 (2004).CrossRefADSGoogle Scholar
  30. 30.
    Y. Zhang, B. Fluegel, A. Mascarenhas, Phys. Rev. Lett. 91, 157404 (2003); Z. Liu, Z. Lin, S.T. Chui, Phys. Rev. B 69, 115402 (2004).CrossRefADSGoogle Scholar
  31. 31.
    Z. Feng, X. Zhang, Y.Q. Wang, Z.Y. Li, B.Y. Cheng, D.Z. Zhang, Phys. Rev. Lett. 94, 247402 (2005).CrossRefADSGoogle Scholar
  32. 32.
    M.E. Zoorob, M.D.B. Chartton, G.J. Parker, J.J. Baumberg, M.C. Nettl, Nature (London) 404, 740 (2000).CrossRefADSGoogle Scholar
  33. 33.
    X. Zhang, Z.Q. Zhang, C.T. Chan, Phys. Rev. B 63, 081105 (2001).CrossRefADSGoogle Scholar
  34. 34.
    C. Jin, B. Cheng, B. Man, Z. Li, D.Z. Zhang, S. Ban, B. Sun, Appl. Phys. Lett. 75,1848 (1999).CrossRefADSGoogle Scholar
  35. 35.
    E. Rotenberg, W. Theis, K. Horn, P. Gille, Nature (London) 406, 602 (2000).CrossRefADSGoogle Scholar
  36. 36.
    M. Born, E. Wolf, Principles of Optics, chapter VIII, 7th edn. (Cambridge University Press, Cambridge, 1999), p. 462.Google Scholar
  37. 37.
    X. Hu, Y. Shen, X. Liu, R. Fu, J. Zi, Phys. Rev. E 69, 030201 (2004).CrossRefADSGoogle Scholar
  38. 38.
    X. Zhang, Z. Liu, Appl. Phys. Lett. 85, 341 (2004).CrossRefADSGoogle Scholar
  39. 39.
    C. Qiu, X. Zhang, Z. Liu, Phys. Rev. B 71, 054302 (2005).CrossRefADSGoogle Scholar
  40. 40.
    S. Yang, J.H. Page, Z. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Phys. Rev. Lett. 93,024301(2004).CrossRefADSGoogle Scholar
  41. 41.
    L. Feng, X.-P. Liu, Y.-B. Chen, Z.-P. Huang, Y.-W. Mao, Y.-F. Chen, J. Zi, Y.-Y. Zhu, Phys. Rev. B 72, 033108 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xiangdong Zhang
    • 1
  • Zhifang Feng
    • 2
  • Yiquan Wang
    • 2
  • Zhi-Yuan Li
    • 2
  • Bingying Cheng
    • 2
  • Dao-Zhong Zhang
    • 2
  1. 1.Beijing Normal UniversityChina
  2. 2.Institute of Physics Chinese Academy of SciencesChina

Personalised recommendations