Advertisement

Negative Refraction and Subwavelength Focusing in Two-Dimensional Photonic Crystals

  • Ekmel Ozbay
  • Gonca Ozkan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

We experimentally and theoretically demonstrate negative refraction and focusing on electromagnetic (EM) waves by using two-dimensional photonic crystal slabs at microwave frequencies. Negative refraction is observed both for transverse magnetic (TM) and transverse electric (TE) polarized incident EM waves. Gaussian beam shifting method is used to verify negative refractive index. Subwavelength imaging and flat lens behavior of photonic crystals are successfully demonstrated. We have been able to overcome the diffraction limit and focus the EM waves to a spot size of 0.21θ. Metallodielectric photonic crystals are employed to increase the range of angles of incidence that results in negative refraction. Experimental results and theoretical calculations are in good agreement throughout the work.

Keywords

Photonic Crystal Negative Refraction Negative Refractive Index Photonic Crystal Structure Monopole Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.G. Veselago, Sov. Phys. Usp. 10, 504 (1968).CrossRefADSGoogle Scholar
  2. 2.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).CrossRefADSGoogle Scholar
  3. 3.
    R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Appl. Phys. Lett. 78, 489(2001).CrossRefADSGoogle Scholar
  4. 4.
    M. Bayindir, K. Aydin, P. Markos, C.M. Soukoulis, E. Ozbay, Appl. Phys. Lett. 81,120(2002).CrossRefADSGoogle Scholar
  5. 5.
    K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C.M. Soukoulis, E. Ozbay, Opt. Lett. 29, 2623 (2004).CrossRefADSGoogle Scholar
  6. 6.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  7. 7.
    C.G. Parazzoli, R.B. Greegor, K. Li, B.E. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).CrossRefADSGoogle Scholar
  8. 8.
    A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).CrossRefADSGoogle Scholar
  9. 9.
    K. Aydin, K. Guven, C.M. Soukoulis, E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005) .CrossRefADSGoogle Scholar
  10. 10.
    K. Aydin, I. Bulu, E. Ozbay, Opt. Express 13, 8753 (2005).CrossRefADSGoogle Scholar
  11. 11.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, J. Phys. Condens. Matter. 10,4785(1998).CrossRefADSGoogle Scholar
  12. 12. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).Google Scholar
  13. 13.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  14. 14.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefADSGoogle Scholar
  15. 15.
    S. John, Phys. Rev. Lett. 58, 2486 (1987).CrossRefADSGoogle Scholar
  16. 16.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).zbMATHGoogle Scholar
  17. 17.
    C.M. Soukoulis (ed.), Photonic Crystals and Light Localization in the 21st Century (Kluwer, Norwell, MA, 2001).Google Scholar
  18. 18.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin Heidelberg New York, 2001).Google Scholar
  19. 19.
    E. Ozbay, G. Tuttle, R. Biswas, K.M. Ho, J. Bostak, D.M. Bloom, Appl. Phys. Lett. 65, 1617 (1994).CrossRefADSGoogle Scholar
  20. 20.
    E. Ozbay, B. Temelkuran, Appl. Phys. Lett. 69, 743 (1996).CrossRefADSGoogle Scholar
  21. 21.
    A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, and J.D. Joannapoulos, Phys. Rev. Lett. 77, 3787 (1996).CrossRefADSGoogle Scholar
  22. 22.
    P.R. Villeneuve, D.S. Abrams, S. Fan, J.D. Joannopoulos, Opt. Lett. 21, 2017. (1996).CrossRefADSGoogle Scholar
  23. 23.
    B. Temelkuran, E. Ozbay, J.P. Kavanaugh, G. Tuttle, K.M. Ho, Appl. Phys. Lett. 72, 2376 (1998).CrossRefADSGoogle Scholar
  24. 24.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakamib, Appl. Phys. Lett. 74, 1370 (1999).CrossRefADSGoogle Scholar
  25. 25.
    M. Bayindir, E. Ozbay, Phys Rev. B 62, R2247 (2000).CrossRefADSGoogle Scholar
  26. 26.
    M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T.P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).CrossRefADSGoogle Scholar
  27. 27.
    S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki, Science 293, 1123(2001).CrossRefADSGoogle Scholar
  28. 28.
    M. Bayindir, S. Tanriseven, E. Ozbay, Appl. Phys. A-Mater. Sci. Process. 72, 117(2001).CrossRefADSGoogle Scholar
  29. 29.
    E. Ozbay, M. Bayindir, I. Bulu, E. Cubukcu, IEEE J. Quantum Electron. 38, 837(2002).CrossRefADSGoogle Scholar
  30. 30.
    S. Enoch, B. Gralak, G. Tayeb, Appl. Phys. Lett. 81, 1588 (2002).CrossRefADSGoogle Scholar
  31. 31.
    M.F. Yanik, S. Fan, Phys. Rev. Lett. 92, 083901 (2004).CrossRefADSGoogle Scholar
  32. 32.
    B. Gralak, S. Enoch, G. Tayeb, J. Opt. Soc. Am. A 17, 1012 (2000).CrossRefADSGoogle Scholar
  33. 33.
    M. Notomi, Phys. Rev. B 62, 10696 (2000).CrossRefADSGoogle Scholar
  34. 34.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104. (2002).CrossRefADSGoogle Scholar
  35. 35.
    S. Foteinopoulou, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 90, 107402. (2003).CrossRefADSGoogle Scholar
  36. 36.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature. 423,604(2003).CrossRefADSGoogle Scholar
  37. 37.
    P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, S. Sridhar, Phys. Rev. Lett. 92, 127401 (2004).CrossRefADSGoogle Scholar
  38. 38.
    A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, S. Anand, Phys. Rev. Lett. 93, 073902 (2004).CrossRefADSGoogle Scholar
  39. 39.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, Phys. Rev. B 58, R10096 (1998) .CrossRefADSGoogle Scholar
  40. 40.
    S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. B 67, 235107 (2003).CrossRefADSGoogle Scholar
  41. 41.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).CrossRefADSGoogle Scholar
  42. 42.
    P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003).CrossRefADSGoogle Scholar
  43. 43.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 68, 045115 (2003).CrossRefADSGoogle Scholar
  44. 44.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Opt. Express 11, 746 (2003).CrossRefADSGoogle Scholar
  45. 45.
    S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. B 72, 165112 (2005).CrossRefADSGoogle Scholar
  46. 46.
    R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, C.M. Soukoulis, Phys. Rev. B 71, 085106 (2005).CrossRefADSGoogle Scholar
  47. 47.
    K. Guven, K. Aydin, K.B. Alici, C.M. Soukoulis, E. Ozbay, Phys. Rev. B 70, 205125(2004).CrossRefADSGoogle Scholar
  48. 48.
    E. Ozbay, K. Guven, E. Cubukcu, K. Aydin, B.K. Alici, Mod. Phys. Lett. B 18, 1275(2004). ı, Phys. Rev. B 69, 165119 (2004).CrossRefADSGoogle Scholar
  49. 50.
    I. Bulu, H. Caglayan, E. Ozbay, Phys. Rev. B 72, 045125 (2005).CrossRefADSGoogle Scholar
  50. 51.
    P. Vodo, P.V. Parimi, W.T. Lu, S. Sridhar, R. Wing, Appl. Phys. Lett. 85, 1858 (2005).CrossRefADSGoogle Scholar
  51. 52.
    P. Vodo, P.V. Parimi, W.T. Lu, S. Sridhar, Appl. Phys. Lett. 86, 201108 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ekmel Ozbay
    • 1
  • Gonca Ozkan
    • 2
  1. 1.Nanotechnology Research Center, Department of Physics and Department of Electrical and Electronics EngineeringBilkent UniversityBilkentTurkey
  2. 2.Nanotechnology Research CenterBilkent UniversityBilkentTurkey

Personalised recommendations