Advertisement

“Left-Handed” Magnetic Granular Composites

  • Siu-Tat Chui
  • L. B. Hu
  • Zifang Lin
  • Lei Zhou
Chapter
  • 1.4k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

We investigate the possibility of preparing left-handed materials in metallic magnetic granular composites. Based on the effective medium approximation, we show that by incorporating metallic magnetic nanoparticles into an appropriate insulating matrix and controlling the directions of magnetization of metallic magnetic components and their volume fraction, it may be possible to prepare a composite medium which is left handed for electromagnetic waves propagating in some special direction and polarization in a frequency region near the ferromagnetic resonance frequency. This composite may be easier to make on an industrial scale. In addition, its physical properties may be easily tuned by rotating the magnetization locally. The anisotropic characteristics of this material is discussed. The exactly solvable example of the multilayer system is used to illustrate the results of the effective medium calculation.

Keywords

Wave Vector Incident Wave Poynting Vector Permeability Tensor Refract Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett.76, 4773(1996).CrossRefADSGoogle Scholar
  2. 2.
    R.H. Ritchie, A. Howie, Philos. Mag. A 44, 931 (1981).CrossRefADSGoogle Scholar
  3. 3.
    T.L. Ferrell, P.M. Echenique, Phys. Rev. Lett. 55, 1526 (1985).CrossRefADSGoogle Scholar
  4. 4.
    A.W. Howie, C.A. Walsh, Microsc. Microanal. Microstruct. 2, 171 (1991).CrossRefGoogle Scholar
  5. 5.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).CrossRefADSGoogle Scholar
  6. 6.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemet-Nasser, S. Schultz, Phys. Rev. Lett. 67, 3578 (2000).Google Scholar
  7. 7.
    S.T. Chui, L.B. Hu, Phys. Rev. B 65, 144407 (2002).CrossRefADSGoogle Scholar
  8. 8.
    R. Burridge, S. Childress, G. papanicolaou (eds.), Macroscopic Properties of Disordered Media (Springer, Berlin Heidelberg New York, 1982).CrossRefzbMATHGoogle Scholar
  9. 9.
    C.P. Slichter, Principle of Magnetic Resonance (Springer, Berlin Heidelberg New York, 1978).Google Scholar
  10. 10. J.C. Garland, D.B. Tanner (eds.), Electrical Transport and Optical Properties of Inhomogeneous Media (American Institute of Physics, New York, 1978).Google Scholar
  11. 11.
    D. Stroud, F.P. Pan, Phys. Rev. B 20, 455 (1979).CrossRefADSGoogle Scholar
  12. 12.
    P. Sheng, Phys. Rev. Lett 45, 60 (1980).CrossRefADSGoogle Scholar
  13. 13.
    W. Lamb, D.M. Wood, N.W. Ashcroft, Phys. Rev. B 21, 2248 (1980).CrossRefADSGoogle Scholar
  14. 14.
    H.C. Van de Hulst, Light Scattering by Small Particles, chap.9(Dover, New York, 1981); J.D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).Google Scholar
  15. 15.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, chap. 11 (Pergamon, Oxford, 1960).zbMATHGoogle Scholar
  16. 16.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  17. 17.
    D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).CrossRefADSGoogle Scholar
  18. 18.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999), p. 837.Google Scholar
  19. 19.
    P. Sheng, R.S. Stepleman, P.N. Sanda, Phys. Rev. B 26, 2907 (1982).CrossRefADSGoogle Scholar
  20. 20.
    S.T. Chui, M.Y. Zhou, P. Sheng, Z. Chen, J. Appl. Phys. 69, 3366 (1989) .CrossRefADSGoogle Scholar
  21. 21.
    Define a matrix U = T (pi , di , Ti ) T (pm , dm , Tm ). One can show by direct computation that the determinant of the matrix U is 1. The eigenvalue equation det(U − λ) = 0 reduces to a quadratic equation λ2 − 2zλ + 1 = 0, where z is the right-hand side of Eq. (1). The solution of this equation is λ = z ± (z2 − 1)0.5 . If one calls z = cos kl, then λ = exp(±ikl), as claimed.Google Scholar
  22. 22.
    J.D. Jackson, Classical Electrodynamics, section6.9,3rd edn.(Wiley, New York, 1999).zbMATHGoogle Scholar
  23. 23.
    L.B. Hu, S.T. Chui, Phys. Rev. B 66, 085108 (2002); L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. B 68, 115424 (2003).CrossRefADSGoogle Scholar
  24. 24.
    R.X. Wu, X.K. Zhang, Z.F. Lin, S.T. Chui, J.Q. Xiao, J. Magn. Magn. Mater. 271(2-3), 180-183 (2004).CrossRefADSGoogle Scholar
  25. 25.
    S.T. Chui, L.B. Hu, Z.F. Lin, Phys. Lett. A 319, 85 (2003).CrossRefADSGoogle Scholar
  26. 26.
    This result is obtained from the condition that the matrix becomes diagonal and the trace of the submatrix is invariant under rotation.Google Scholar
  27. 27.
    M.A. Ordal et al., Appl. Opt. 22, 1099 (1983).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Siu-Tat Chui
    • 1
  • L. B. Hu
    • 2
  • Zifang Lin
    • 2
  • Lei Zhou
    • 2
  1. 1.Department of Physics and AstronomyUniversity of DelawareNewarkUSA
  2. 2.Bartol Research Institute and Department of Physics and AstronomyUniversity of DelawareNewarkUSA

Personalised recommendations