Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures and Negative Refractive Bicrystal Heterostructures

  • Clifford M. Krowne
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

Effect of anisotropy in the physical tensor description of the negative index of refraction material acting as a substrate is found on the electromagnetic field distributions. This is done for the case of a microstrip structure whose configuration is commonly used in microwave and millimeter wave integrated circuits. These ab initio studies have been done self-consistently with a computer code using a full-wave integral equation numerical method based upon a generalized anisotropic Green’s function utilizing appropriate boundary conditions. Field distributions are provided over two decades of frequency in the cross-section of the uniform guided wave structure, from 0.2 to 20 GHz. It is found that modifying the tensor can allow control because the wave changes volumetrically, or switches from volumetric to surface, in its distribution of fields. It has also been discovered that heterostructure bicrystal arrangements lead to field asymmetry in guided wave structures. A study is conducted over a range of nominal permittivity values to see if the effect is present in widely varying dielectric materials. Marked shifts of the field distribution occurs in some cases, and this can be the basis of an all electronic device that provides beam steering or a device that gives directional action. Such all electronic devices could be fixed or even constructed as control components using materials with electrostatically controllable permittivity. Distributions have been obtained to demonstrate the effect using an anisotropic Green’s function solver.


Surface Wave Color Distribution Distribution Plot Nominal Case Beam Steering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.M. Krowne, Bull. Am. Phys. Soc. 48, Pt. 1, 580 (Mar. 2003).Google Scholar
  2. 2.
    C.M. Krowne, Phys. Rev. Lett. 92(5), 053901-1 to 4 (Feb. 3, 2004). Also on Cornell Univ. Archive, May 5, 2003.Google Scholar
  3. 3.
    F.J. Rachford, D.L. Smith, P.L. Loschialpo, D.W. Forester, Phys. Rev. E 66, 036613-1 to 5 (2002).CrossRefADSGoogle Scholar
  4. 4.
    P.L. Loschialpo, D.L. Smith, D.W. Forester, F.J. Rachford, Phys. Rev. E 67, 025602(R)-1 to 4 (2003).CrossRefADSGoogle Scholar
  5. 5.
    A. Lakhtakia, C.M. Krowne, Optik 114(7), 305-307 (2003). Also on Cornell Univ. arXiv, physics/0308043, Aug. 11, 2003.ADSGoogle Scholar
  6. 6.
    A. Alu, N. Engheta, Microw. Opt. Tech. Lett. 35, 460-463 (2002).CrossRefGoogle Scholar
  7. 7.
    L. Hu, S.T. Chui, Phys. Rev. B 66, 085108-1 to 7 (2002).CrossRefADSGoogle Scholar
  8. 8.
    C. Caloz, A. Sanada, L. Liu, T. Itoh, IEEE MTT-S Int. Microw. Symp. Dig. 317-320 (June 2003).Google Scholar
  9. 9.
    Islam, G.V. Eleftheriades, IEEE MTT-S Int. Microw. Symp. Dig. 321-324. (June 2003).Google Scholar
  10. 10.
    I.-H. Lin, C. Caloz, T. Itoh, IEEE MTT-S Int. Microw. Symp. Dig. 325-328. (June 2003).Google Scholar
  11. 11.
    H. Okabe, C. Caloz, T. Itoh, IEEE MTT-S Int. Microw. Symp. Dig. 329-332. (June 2003).Google Scholar
  12. 12.
    C.M. Krowne, IEEE Trans. Microw. Theory Tech. 51, 2269-2283 (Dec. 2003).Google Scholar
  13. 13.
    C.M. Krowne, M. Daniel, IEEE Int. Microw. Symp. Dig. 309-312 (June 2003).Google Scholar
  14. 14.
    C.M. Krowne, IEEE Trans. Microw. Theory Tech. 32, 1617-1625 (Dec. 1984).Google Scholar
  15. 15.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics, repr.1978. (McGraw-Hill, New York, 1953).zbMATHGoogle Scholar
  16. 16.
    A.A. Mostafa, C.M. Krowne, K.A. Zaki, IEEE Trans. Microw. Theory Tech. 35, 1399-1407 (Dec. 1987).Google Scholar
  17. 17.
    C.M. Krowne, Microw. Opt. Technol. Letts. 28(1), 63-69 (Jan. 5, 2001).CrossRefGoogle Scholar
  18. 18.
    C.M. Krowne, Theoretical considerations for full-wave electromagnetic-media interactions in layered structures with ferroelectric or ferromagnetic materials, Invited paper, Proc. SPIE (Soc. Photo-Optical Instrum. Eng.), Complex Medi-ums, Microwave Materials 4097, 70-84 (July 30, 2000).Google Scholar
  19. 19.
    C.M. Krowne, A.A. Mostafa, K.A. Zaki, IEEE Trans. Microw. Theory Tech. 36, 1850-1860 (Dec. 1988).Google Scholar
  20. 20.
    C.M. Krowne, J. Appl. Phys. 99, 044914-1 to 19 (15 Feb. 2006). Also on Cornell Univ. Archive, Scholar
  21. 21.
    C.M. Krowne, Encyclopedia of RF and Microwave Engineering, vol. 3 (Wiley, New York, 2005), pp. 2303-2320.Google Scholar
  22. 22.
    C.M. Krowne, Bull. Am. Phys. Soc. 49, Pt. 2, 928 (Mar. 2004).Google Scholar
  23. 23.
    C.M. Krowne, Phys. Rev. Lett. 93(5), 053902-1 to 4 (July 2004).CrossRefADSGoogle Scholar
  24. 24.
    Y. Zhang, B. Fluegel, A. Mascarenhas, Bull. Am. Phys. Soc. 49, Pt. 2, 928. (Mar. 2004).Google Scholar
  25. 25.
    Y. Zhang, B. Fluegel, A. Mascarenhas, Phys. Rev. Lett. 91, 157404-1 to 4 (Oct. 2003).CrossRefADSGoogle Scholar
  26. 26.
    J.F. Nye, Physical Properties of Crystals(Oxford University Press, Oxford, 1979). First published 1957.Google Scholar
  27. 27.
    F.J. Rosenbaum, Advances Microwaves, vol. 8 (Academic, New York, 1974), pp. 203-294.Google Scholar
  28. 28.
    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 2001). First published 1977.CrossRefGoogle Scholar
  29. 29.
    K. Uchino, Ferroelectric Devices (Dekker, New York, 2000).Google Scholar
  30. 30. C.M. Krowne, M. Daniel, S.W. Kirchoefer, J.M. Pond, IEEE Trans. Microw. Theory Tech. 50(2), 537-548 (Feb. 2002).Google Scholar
  31. 31. C.M. Krowne, IEEE Trans. Antennas Propagat. 32, 1224-1230 (Nov. 1984).Google Scholar
  32. 32.
    C.M. Krowne, Appli. Phys. Lett. 91, 022902 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Clifford M. Krowne
    • 1
  1. 1.Microwave Technology Branch Electronics Science and Technology DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations