Advertisement

Super Low Loss Guided Wave Bands Using Split Ring Resonator-Rod Assemblies as Left-Handed Materials

  • Clifford M. Krowne
Chapter
  • 1.4k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

SRR metamaterial is used as a substrate material in a microstrip guided wave structure to determine what the effect is of a material with potentially excessive dispersion or loss or both. A Green’s function method readily incorporates the metamaterial permittivity and permeability tensor characteristics. Ab initio calculations are performed to obtain the dispersion diagrams of several complex propagation constant modes of the structure. Analytical analysis is done for the design and interpretation of the results, which demonstrate remarkable potential for realistic use in high frequency electronics while using the LHM for possible field reconfigurations. Bands of extremely low loss appear for several of the lowest order modes operating in the millimeter wavelength regime.

Keywords

Photonic Crystal Fundamental Mode Forward Wave Lower Order Mode Dispersion Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Krowne, Phys Rev. Lett. 92, 053901 (2004).CrossRefADSGoogle Scholar
  2. 2.
    C.M. Krowne, arXiv.org/abs/cond-mat/0406219 (June 10, 2004).Google Scholar
  3. 3.
    C.M. Krowne, Phys Rev. Lett. 93, 053902 (2004) γs in this work were α = 0 and β (unrotated-stripline) = 2.30195 (nx = nz = 1, n = 200); β (rotated-stripline) = 2.24643 (nx = nz = 1, n = 200) and 2.24623 (nx = nz = 5, n = 500) all asymmetric basis set; β (rotated-microstrip) = 2.11530 asymmetric basis and. 2.11604 symmetric basis (nx = nz = 1, n = 200).Google Scholar
  4. 4.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104. (2002).CrossRefADSGoogle Scholar
  5. 5.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Opt. Express 11, 746. (2003).CrossRefADSGoogle Scholar
  6. 6.
    S. Foteinopoulou, C.M. Soukoulos, Phys. Rev. B 67, 235107 (2003).CrossRefADSGoogle Scholar
  7. 7.
    P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003).CrossRefADSGoogle Scholar
  8. 8.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  9. 9.
    P. Markos, I. Rousochatzakis, C.M. Soukoulis, Phys. Rev. E 66, 045601 (2002).CrossRefADSGoogle Scholar
  10. 10.
    N.C. Panoiu, R.M. Osgood Jr., Phys. Rev. E 68, 016611 (2003).CrossRefADSGoogle Scholar
  11. 11.
    J.O. Dimmock, Opt. Express 11, 2397 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    N.C. Panoiu, R.M. Osgood Jr., Opt. Commun. 223, 331 (2003).CrossRefADSGoogle Scholar
  13. 13.
    P. Markos, C.M. Soukoulis, Phys. Status Solidi (a) 197, 595 (2003).CrossRefADSGoogle Scholar
  14. 14.
    P. Markos, C.M. Soukoulis, Opt. Express 11, 649 (2003).CrossRefADSGoogle Scholar
  15. 15.
    R.B. Greegor, C.G. Parazzoli, K. Li, B.E.C. Koltenbah, M. Tanielian, Opt. Express 11, 688 (2003).CrossRefADSGoogle Scholar
  16. 16.
    P. Markos, C.M. Soukoulis, Phys. Rev. E 65, 036622 (2002).CrossRefADSGoogle Scholar
  17. 17.
    D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104. (2002).CrossRefADSGoogle Scholar
  18. 18.
    L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, J.A. Kong, Phys. Rev. B 70, 073102 (2004).CrossRefADSGoogle Scholar
  19. 19.
    K.J. Webb, M. Yang, D.W. Ward, K.A. Nelson, Phys. Rev. E 70, 035602 (R). (2004).CrossRefADSGoogle Scholar
  20. 20.
    J. Pendry, A.J. Holden, W.J. Stewart, I. Young, Phys Rev. Lett. 76, 4773 (1996).CrossRefADSGoogle Scholar
  21. 21. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).Google Scholar
  22. 22.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1967).Google Scholar
  23. 23.
    C.M. Krowne, Int. J. Numer. Model.: Electr. Networks, Dev. Fields 12, 399. (1999).zbMATHCrossRefGoogle Scholar
  24. 24.
    C.M. Krowne, IET Proc. Microwaves, Antennas & Propag. 1 (2007).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Clifford M. Krowne
    • 1
  1. 1.Microwave Technology Branch Electronics Science and Technology DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations