Negative Refraction of Electromagnetic and Electronic Waves in Uniform Media

  • Yong Zhang
  • Angelo Mascarenhas
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 98)

We discuss various schemes that have been used to realize negative refraction and zero reflection, and the underlying physics that dictates each scheme. The requirements for achieving both negative refraction and zero reflection are explicitly given for different arrangements of the material interface and different structures of the electric permittivity tensor ε. We point out that having a lefthanded medium is neither necessary nor sufficient for achieving negative refraction. The fundamental limitations are discussed for using these schemes to construct a perfect lens or “superlens,” which is the primary context of the current interest in this field. The ability of an ideal “superlens” beyond diffraction-limit “focusing” is contrasted with that of a conventional lens or an immersion lens.


Photonic Crystal Electronic Wave Evanescent Wave Spatial Dispersion Negative Refraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  2. 2.
    J.B. Pendry, Science 305, 788 (2005).Google Scholar
  3. 3.
    J.B. Pendry, D.R. Smith, Phys. Today 57, 37 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, A. Mascarenhas, Mod. Phys. Lett. B 18 (2005).Google Scholar
  5. 5.
    A. Schuster, An Introduction to the Theory of Optics(Edward Arnold, London, 1904).zbMATHGoogle Scholar
  6. 6.
    E.I. Rashba, J. Appl. Phys. 79, 4306 (1996).CrossRefADSGoogle Scholar
  7. 7.
    C.F. Klingshirn, Semiconductor Optics(Springer, Berlin Heidelberg New York, 1995).Google Scholar
  8. 8.
    G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892(2006).CrossRefADSGoogle Scholar
  9. 9.
    V.M. Agranovich, V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons (Wiley, London, 1966).Google Scholar
  10. 10.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).CrossRefADSGoogle Scholar
  11. 11.
    A.I. Viktorov, Physical Principles of the Use of Ultrasonic Raleigh and Lamb Waves in Engineering (Nauka, Russia, 1966).Google Scholar
  12. 12.
    P.V. Burlii, I.Y. Kucherov, JETP Lett. 26, 490 (1977).ADSGoogle Scholar
  13. 13.
    H. Lamb, Proc. London Math. Soc. Sec. II 1, 473 (1904).CrossRefGoogle Scholar
  14. 14.
    C.M. Krowne, Encyclopedia of Rf and Microwave Engineering, vol. 3 (Wiley, New York, 2005), p. 2303.Google Scholar
  15. 15.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).Google Scholar
  16. 16.
    J. Neufeld, R.H. Ritchie, Phys. Rev. 98, 1955 (1955).CrossRefGoogle Scholar
  17. 17.
    V.L. Ginzburg, JETP 34, 1096 (1958).MathSciNetGoogle Scholar
  18. 18.
    V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, Phys. Rev. B. 69,165112(2004).CrossRefADSGoogle Scholar
  19. 19.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices(Clarendon, Oxford, 1954).zbMATHGoogle Scholar
  20. 20.
    J.J. Hopfield, Phys. Rev. 112, 1555 (1958).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, J. Lumin. 110, 167(2004).CrossRefGoogle Scholar
  22. 22.
    V.E. Pafomov, Sov. Phys. JETP 36, 1321 (1959).Google Scholar
  23. 23.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  24. 24.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 1984).Google Scholar
  25. 25.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95 (2005).Google Scholar
  26. 26.
    A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438, 335 (2005).CrossRefADSGoogle Scholar
  27. 27.
    S. Zhang, W.J. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95 (2005).Google Scholar
  28. 28.
    S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 1351 (2004).CrossRefADSGoogle Scholar
  29. 29.
    V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005).CrossRefADSGoogle Scholar
  30. 30.
    J.B. Pendry, Science 306, 1353 (2004).CrossRefADSGoogle Scholar
  31. 31.
    Y. Zhang, B. Fluegel, A. Mascarenhas, Phys. Rev. Lett. 91, 157404 (2003).CrossRefADSGoogle Scholar
  32. 32.
    Y. Zhang, A. Mascarenhas, in Mat. Res. Soc. Symp. Proc., vol. 794 (MRS Fall Meeting, Boston, 2003), p. T10.1.Google Scholar
  33. 33.
    L.I. Perez, M.T. Garea, R.M. Echarri, Opt. Commun. 254, 10 (2005).CrossRefADSGoogle Scholar
  34. 34.
    X.L. Chen, H. Ming, D. YinXiao, W.Y. Wang, D.F. Zhang, Phys. Rev. B 72, 113111(2005).CrossRefADSGoogle Scholar
  35. 35.
    Y.X. Du, M. He, X.L. Chen, W.Y. Wang, D.F. Zhang, Phys. Rev. B 73, 245110(2006).CrossRefADSGoogle Scholar
  36. 36.
    Y. Lu, P. Wang, P. Yao, J. Xie, H. Ming, Opt. Commun. 246, 429 (2005).CrossRefGoogle Scholar
  37. 37.
    Z. Liu, Z.F. Lin, S.T. Chui, Phys. Rev. B 69, 115402 (2004).CrossRefADSGoogle Scholar
  38. 38.
    Y. Wang, X.J. Zha, J.K. Yan, Europhys. Lett. 72, 830 (2005).CrossRefADSGoogle Scholar
  39. 39.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin Heidelberg New York, 2001).Google Scholar
  40. 40.
    S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. B 72, 165112 (2005).CrossRefADSGoogle Scholar
  41. 41.
    M. Notomi, Phys. Rev. B 62, 10696 (2000).CrossRefADSGoogle Scholar
  42. 42.
    P.V. Parimi, W.T.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003).CrossRefADSGoogle Scholar
  43. 43.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104(2002).CrossRefADSGoogle Scholar
  44. 44.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature. 423,604(2003).CrossRefADSGoogle Scholar
  45. 45.
    A.B. Pippard, The Dynamics of Conduction Electrons (Gordon and Breach, New York, 1965).Google Scholar
  46. 46.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
  47. 47.
    L. Silvestri, O.A. Dubovski, G.C. La Rocca, F. Bassani, V.M. Agranovich, Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics 27, 437(2004).ADSGoogle Scholar
  48. 48.
    C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 68, 45115(2003).CrossRefADSGoogle Scholar
  49. 49.
    A.L. Pokrovsky and A.L. Efros, Phys. B 338, 333 (2003).CrossRefADSGoogle Scholar
  50. 50.
    D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).CrossRefADSGoogle Scholar
  51. 51.
    I. Ichimura, S. Hayashi, G.S. Kino, Appl. Opt. 36, 4339 (1997).CrossRefADSGoogle Scholar
  52. 52.
  53. 53.
    S.M. Mansfield, G.S. Kino, Appl. Phys. Lett. 57, 2615 (1990).CrossRefADSGoogle Scholar
  54. 54.
    I. Smolyaninov, J. Elliott, A.V. Zayats, C.C. Davis, Phys. Rev. Lett. 94 (2005).Google Scholar
  55. 55.
    Z.F. Feng, X.D. Zhang, Y.Q. Wang, Z.Y. Li, B.Y. Cheng, D.Z. Zhang, Phys. Rev. Lett. 94 (2005).Google Scholar
  56. 56.
    Z. Lu, J.A. Murakowski, C.A. Schuetz, S. Shi, G.J. Schneider, D.W. Prather, Phys. Rev. Lett. 95, 153901 (2005).CrossRefADSGoogle Scholar
  57. 57.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005).CrossRefADSGoogle Scholar
  58. 58.
    D.O.S. Melville, R.J. Blaikie, Opt. Express 13, 2127 (2005).CrossRefADSGoogle Scholar
  59. 59.
    J.M. Vigoureux, D. Courjon, Appl. Opt. 31, 3170 (1992).CrossRefADSGoogle Scholar
  60. 60.
    A.L. Efros, A.L. Pokrovsky, Solid State Commun. 129, 643 (2004).CrossRefADSGoogle Scholar
  61. 61.
    T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, B. Gralak, Phys. Rev. Lett. 97(2006).Google Scholar
  62. 62.
    I.V. Lindell, S.A. Tretyakov, K.I. Nikoskinen, S. Ilvonen, Microw. Opt. Technol. Lett. 31, 129 (2001).CrossRefGoogle Scholar
  63. 63.
    L.B. Hu, S.T. Chui, Phys. Rev. B 66, 085108 (2002).CrossRefADSGoogle Scholar
  64. 64.
    L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. B 68, 115424 (2003).CrossRefADSGoogle Scholar
  65. 65.
    D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).CrossRefADSGoogle Scholar
  66. 66.
    T. Dumelow, J.A.P. da Costa, V.N. Freire, Phys. Rev. B 72 (2005).Google Scholar
  67. 67.
    S.D. Gedney, IEEE Trans. Antennas Propagat. 44, 1630 (1996).Google Scholar
  68. 68.
    A. Lakhtakia, R. Messier, Opt. Eng. 33, 2529 (1994).CrossRefADSGoogle Scholar
  69. 69.
    G.Y. Slepyan, A.S. Maksimenko, Opt. Eng. 37, 2843 (1998).CrossRefADSGoogle Scholar
  70. 70.
    Y. Zhang, A. Mascarenhas, Phys. Rev. B 55, 13100 (1997).CrossRefADSGoogle Scholar
  71. 71.
    Y. Zhang, A. Mascarenhas, S.P. Ahrenkiel, D.J. Friedman, J. Geisz, J.M. Olson, Solid State Commun. 109, 99 (1999).CrossRefGoogle Scholar
  72. 72.
    Y. Zhang, B. Fluegel, S.P. Ahrenkiel, D.J. Friedman, J. Geisz, J.M. Olson, A. Mascarenhas, Mat. Res. Soc. Symp. Proc. 583, 255 (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yong Zhang
    • 1
  • Angelo Mascarenhas
    • 1
  1. 1.Materials Science CenterNational Renewable Energy Laboratory (NREL)GoldenUSA

Personalised recommendations