Skip to main content

Creating a Cardiac Pacemaker by Gene Therapy

  • Chapter
Biopacemaking

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

Abstract

While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on β-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anumonwo JM et al (1992) Gap junctional channels in adult mammalian sinus nodal cells. Immunolocalization and electrophysiology. Circ Res 71:229–239

    Google Scholar 

  2. Bauer A et al (2004) Inhibitory G protein overexpression provides physiologically relevant heart rate control in persistent atrial fibrillation. Circulation 110:3115–3120

    Article  Google Scholar 

  3. Bekeredjian R, Shohet RV (2004) Cardiovascular gene therapy: angiogenesis and beyond. Am J Med Sci 327:139–148

    Article  Google Scholar 

  4. Bogdanov KY et al (2006) Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state. Circ Res. DOI 10.1161/01.RES.0000247933.66532.0b

    Google Scholar 

  5. Bonke FI (1973) Passive electrical properties of atrial fibers of the rabbit heart. Pflugers Arch 339:1–15

    Article  Google Scholar 

  6. Boyett MR et al (1995) Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node. Cardiovasc Res 29:867–878

    Article  Google Scholar 

  7. Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687

    Article  Google Scholar 

  8. Brown H, DiFrancesco D (1980) Voltageclamp investigations of membrane currents underlying pacemaker activity in rabbit sinoatrial node. J Physiol 308:331–351

    Google Scholar 

  9. Bunch TJ et al (2006) Impact of transforming growth factorbeta1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart. Circulation 113:2485–2494

    Article  Google Scholar 

  10. Cai J et al (2006) Transplanted neonatal cardiomyocytes as a potential biological pacemaker in pigs with complete atrioventricular block. Transplantation 81:1022–1026

    Article  Google Scholar 

  11. Capogrossi MC, Houser SR, Bahinski A, Lakatta EG (1987) Synchronous occurrence of spontaneous localized calcium release from the sarcoplasmic reticulum generates action potentials in rat cardiac ventricular myocytes at normal resting membrane potential. Circ Res 61:498–503

    Google Scholar 

  12. Champion HC et al (2003) Robust adenoviral and adenoassociated viral gene transfer to the in vivo murine heart: application to study of phospholamban physiology. Circulation 108:2790–2797

    Article  Google Scholar 

  13. De Maziere AM, van Ginneken AC, Wilders R, Jongsma HJ, Bouman LN (1992) Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. J Mol Cell Cardiol 24:567–578

    Article  Google Scholar 

  14. DiFrancesco D, Ferroni A, Mazzanti M, Tromba C (1986) Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sinoatrial node. J Physiol 377:61–88

    Google Scholar 

  15. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:455–472

    Article  Google Scholar 

  16. DiFrancesco D (2006) Serious workings of the funny current. Prog Biophys Mol Biol 90:13–25

    Article  Google Scholar 

  17. Difrancesco D (1991) The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sinoatrial node myocytes. J Physiol 434:23–40

    Google Scholar 

  18. Difrancesco D (1987) The pacemaker current in the sinus node. Eur Heart J 8(Suppl L): 19–23

    Google Scholar 

  19. Donahue JK et al (2000) Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med 6:1395–1398

    Article  Google Scholar 

  20. Donahue JK, Bauer A, Kikuchi K, Sasano T (2005) Modification of cellular communication by gene transfer. Ann N Y Acad Sci 1047:157–165

    Article  Google Scholar 

  21. Donahue JK, Kikuchi K, Sasano T (2005) Gene therapy for cardiac arrhythmias. Trends Cardiovasc Med 15:219–224

    Article  Google Scholar 

  22. Edelberg JM, Aird WC, Rosenberg RD (1998) Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest 101:337–343

    Google Scholar 

  23. Edelberg JM, Huang DT, Josephson ME, Rosenberg RD (2001) Molecular enhancement of porcine cardiac chronotropy. Heart 86:559–562

    Article  Google Scholar 

  24. Elmqvist R (1978) Review of early pacemaker development. Pacing Clin Electrophysiol 1:535–536

    Article  Google Scholar 

  25. Ertel EA et al (2000) Nomenclature of voltagegated calcium channels. Neuron 25:533–535

    Article  Google Scholar 

  26. Fermini B, Nathan RD (1991) Removal of sialic acid alters both T-and L-type calcium currents in cardiac myocytes. Am J Physiol 260:H735–H743

    Google Scholar 

  27. Freudenberger RS, Wilson AC, Lawrence-Nelson J, Hare JM, Kostis JB (2005) Permanent pacing is a risk factor for the development of heart failure. Am J Cardiol 95:671–674

    Article  Google Scholar 

  28. Gilgenkrantz H et al (1995) Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response. Hum Gene Ther 6:1265–1274

    Google Scholar 

  29. Gregoratos G et al (2002) ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). J Cardiovasc Electrophysiol 13:1183–1199

    Article  Google Scholar 

  30. Guo J, Ono K, Noma A (1995) A sustained inward current activated at the diastolic potential range in rabbit sinoatrial node cells. J Physiol 483 (Pt 1):1–13

    Google Scholar 

  31. Guo J, Mitsuiye T, Noma A (1997) The sustained inward current in sinoatrial node cells of guineapig heart. Pflugers Arch 433:390–396

    Article  Google Scholar 

  32. Guo J, Noma A (1997) Existence of a low-threshold and sustained inward current in rabbit atrioventricular node cells. Jpn J Physiol 47:355–359

    Article  Google Scholar 

  33. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sinoatrial node cells. J Physiol 395:233–253

    Google Scholar 

  34. Heubach JF et al (2004) Electrophysiological properties of human mesenchymal stem cells. J Physiol 554:659–672

    Article  Google Scholar 

  35. Hirano Y, Fozzard HA, January CT (1989) Characteristics of L-and T-type Ca2+ currents in canine cardiac Purkinje cells. Am J Physiol 256:H1478–H1492

    Google Scholar 

  36. Hirano Y, Fozzard HA, January CT (1989) Inactivation properties of T-type calcium current in canine cardiac Purkinje cells. Biophys J 56:1007–1016

    Article  Google Scholar 

  37. Holmer SR, Homcy CJ (1991) G proteins in the heart. A redundant and diverse transmembrane signaling network. Circulation 84:1891–1902

    Google Scholar 

  38. Hui A et al (1991) Molecular cloning of multiple subtypes of a novel rat brain isoform of the alpha 1 subunit of the voltage-dependent calcium channel. Neuron 7:35–44

    Article  Google Scholar 

  39. Inagaki K et al (2006) Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14:45–53

    Article  Google Scholar 

  40. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ (1993) Structure and mechanism of the G protein coupled receptor kinases. J Biol Chem 268:23735–23738

    Google Scholar 

  41. Irisawa H, Hagiwara N (1988) Pacemaker mechanism of mammalian sinoatrial node cells. Prog Clin Biol Res 275:33–52

    Google Scholar 

  42. Johns DC et al (1995) Adenovirusmediated expression of a voltagegated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). A novel strategy for modifying excitability. J Clin Invest 96:1152–1158

    Google Scholar 

  43. Johns DC, Nuss HB, Marban E (1997) Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominantnegative Kv4.2 constructs. J Biol Chem 272:31598–31603

    Article  Google Scholar 

  44. Johns DC, Marban E, Nuss HB (1999) Virusmediated modification of cellular excitability. Ann N Y Acad Sci 868:418–422

    Article  Google Scholar 

  45. Jones JM, Wilson KH, Steenbergen C, Koch WJ, Milano CA (2004) Dose dependent effects of cardiac beta2 adrenoceptor gene therapy. J Surg Res 122:113–120

    Article  Google Scholar 

  46. Joyner RW, van Capelle FJ (1986) Propagation through electrically coupled cells. How a small SA node drives a large atrium. Biophys J 50:1157–1164

    Google Scholar 

  47. Kizana E, Ginn SL, Allen DG, Ross DL, Alexander IE (2005) Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. Circulation 111:394–398

    Article  Google Scholar 

  48. Kodama I et al (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272:H2793–H2806

    Google Scholar 

  49. Kurata Y, Hisatome I, Imanishi S, Shibamoto T (2003) Roles of L-type Ca2+ and delayedrectifier K+ currents in sinoatrial node pacemaking: insights from stability and bifurcation analyses of a mathematical model. Am J Physiol Heart Circ Physiol 285:H2804–H2819

    Google Scholar 

  50. Kurata Y, Matsuda H, Hisatome I, Shibamoto T (2006) Effects of pacemaker currents on creation and modulation of human ventricular pacemaker: a theoretical study with application to biological pacemaker engineering. Am J Physiol Heart Circ Physiol

    Google Scholar 

  51. Kusumoto FM, Goldschlager N (1996) Cardiac pacing. N Engl J Med 334:89–97

    Article  Google Scholar 

  52. Lakatta EG, Maltsev VA, Bogdanov KY, Stern MD, Vinogradova TM (2003) Cyclic variation of intracellular calcium: a critical factor for cardiac pacemaker cell dominance. Circ Res 92:e45–e50

    Article  Google Scholar 

  53. Lawrence JH, Johns DC, Chiamvimonvat N, Nuss HB, Marban E (1995) Prospects for genetic manipulation of cardiac excitability. Adv Exp Med Biol 382:41–48

    Google Scholar 

  54. Liechty KW et al (2000) Human mesenchymal stem cells engraft and demonstrate sitespecific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  Google Scholar 

  55. Lin G et al (2005) Biological pacemaker created by fetal cardiomyocyte transplantation. J Biomed Sci 12:513–519

    Article  Google Scholar 

  56. Maltsev VA, Vinogradova TM, Bogdanov KY, Lakatta EG, Stern MD (2004) Diastolic calcium release controls the beating rate of rabbit sinoatrial node cells: numerical modeling of the coupling process. Biophys J 86:2596–2605

    Google Scholar 

  57. Maltsev VA, Vinogradova TM, Lakatta EG (2006) The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci 100:338–369

    Article  Google Scholar 

  58. Mangoni ME et al (2000) Facilitation of the L-type calcium current in rabbit sino atrial cells: effect on cardiac automaticity. Cardiovasc Res 48:375–392

    Article  Google Scholar 

  59. Mangoni ME et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 100:5543–5548

    Article  Google Scholar 

  60. Mangoni ME et al (2006) Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog Biophys Mol Biol 90:38–63

    Article  Google Scholar 

  61. Marionneau C et al (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234

    Article  Google Scholar 

  62. Matsuura H, Ehara T, Ding WG, OmatsuKanbe M, Isono T (2002) Rapidly and slowly activating components of delayed rectifier K(+) current in guineapig sino atrial node pacemaker cells. J Physiol 540:815–830

    Article  Google Scholar 

  63. Matthes J et al (2004) Disturbed atrioventricular conduction and normal contractile function in isolated hearts from Cav1.3-knockout mice. Naunyn Schmiedebergs Arch Pharmacol 369:554–562

    Article  Google Scholar 

  64. Miake J, Marban E, Nuss HB (2002) Biological pacemaker created by gene transfer. Nature 419:132–133

    Article  Google Scholar 

  65. Mitsuiye T, Shinagawa Y, Noma A (2000) Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Circ Res 87:88–91

    Google Scholar 

  66. Noma A, Morad M, Irisawa H (1983) Does the “pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? Pflugers Arch 397:190–19

    Article  Google Scholar 

  67. Nuss HB et al (1996) Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther 3:900–912

    MathSciNet  Google Scholar 

  68. Nuss HB, Marban E, Johns DC (1999) Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J Clin Invest 103:889–896

    Article  Google Scholar 

  69. Oosthoek PW et al (1993) Immunohistochemical delineation of the conduction system. I: The sinoatrial node. Circ Res 73:473–481

    Google Scholar 

  70. Platzer J et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    Article  Google Scholar 

  71. Plotnikov AN et al (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109:506–512

    Article  Google Scholar 

  72. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159–1167

    Google Scholar 

  73. Potapova I et al (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  Google Scholar 

  74. Qu J et al (2003) Expression and function of a biological pacemaker in canine heart. Circulation 107:1106–1109

    Article  Google Scholar 

  75. Qu J et al (2004) MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes. J Biol Chem 279:43497–43502

    Article  Google Scholar 

  76. Qu J et al (2001) HCN2 overexpression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ Res 89:E8–E14

    Google Scholar 

  77. Ravens U (2006) Electrophysiological properties ofstem cells. Herz 31:123–126

    Article  Google Scholar 

  78. Rosen MR (2005) 15th annual Gordon K. Moe Lecture. Biological pacemaking: in our lifetime? Heart Rhythm 2:418–428

    Article  Google Scholar 

  79. Satoh H (2003) Sinoatrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. J Smooth Muscle Res 39:175–193

    Article  Google Scholar 

  80. Satoh H, Tsuchida K (1993) Comparison of a calcium antagonist, CD-349, with nifedipine, diltiazem, and verapamil in rabbit spontaneously beating sinoatrial node cells. J Cardiovasc Pharmacol 21:685–692

    Article  Google Scholar 

  81. Shi W et al (1999) Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:e1–e6

    Google Scholar 

  82. Shukla HH et al (2005) Heart failure hospitalization is more common in pacemaker patients with sinus node dysfunction and a prolonged paced QRS duration. Heart Rhythm 2:245–251

    Article  Google Scholar 

  83. Silva J, Rudy Y (2003) Mechanism of pacemaking in I(K1)-downregulated myocytes. Circ Res 92:261–263

    Article  Google Scholar 

  84. Sweeney MO, Hellkamp AS, Lee KL, Lamas GA (2005) Association of prolonged QRS duration with death in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 111:2418–2423

    Article  Google Scholar 

  85. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  Google Scholar 

  86. Valiunas V et al (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 555:617–626

    Article  Google Scholar 

  87. Verheijck EE, van Ginneken AC, Wilders R, Bouman LN (1999) Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 276:H1064–H1077

    Google Scholar 

  88. Vinogradova TM, Maltsev VA, Bogdanov KY, Lyashkov AE, Lakatta EG (2005) Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick. Ann N Y Acad Sci 1047:138–156

    Article  Google Scholar 

  89. Xue T et al (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111:11–20

    Article  Google Scholar 

  90. Yu H, Chang F, Cohen IS (1993) Phosphatase inhibition by calyculin A increases i(f) in canine Purkinje fibers and myocytes. Pflugers Arch 422:614–616

    Article  Google Scholar 

  91. Zhang Z et al (2002) Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using genetargeted null mutant mice. Circ Res 90: 981–987

    Article  Google Scholar 

  92. Zhang YM, Hartzell C, Narlow M, Dudley SC Jr (2002) Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 106:1294–1299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anghel, T.M., Pogwizd, S.M. (2007). Creating a Cardiac Pacemaker by Gene Therapy. In: Spaan, J.A.E., Coronel, R., de Bakker, J.M.T., Zaza, A. (eds) Biopacemaking. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72110-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72110-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72109-3

  • Online ISBN: 978-3-540-72110-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics