Skip to main content

Embryological Development of Pacemaker Hierarchy and Membrane Currents Related to the Function of the Adult Sinus Node: Implications for Autonomic Modulation of Biopacemakers

  • Chapter
Biopacemaking

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

Abstract

The sinus node is an inhomogeneous structure. In the embryonic heart all myocytes have sinus node type pacemaker channels (I f) in their sarcolemma. Shortly before birth, these channels disappear from the ventricular myocytes. The response of the adult sinus node to changes in the interstitium, in particular to (neuro)transmitters, results from the interplay between the responses of all of its constituent cells. The response of the whole sinus node cannot be simply deduced from these cellular responses, because all cells have different responses to specific agonists. A biological pacemaker will be more homogeneous. Therefore it can be anticipated that tuning of cycle length may be problematic. It is discussed that efforts to create a biological pacemaker responsive to vagal stimulation, may be counterproductive, because it may have the potential risk of’ standstill’ of the biological pacemaker. A normal sinus node remains spontaneously active at high concentrations of acetylcholine, because it has areas that are unresponsive to acetylcholine. The same is pertinent to other substances with a negative chronotropic effect. Such functional inhomogeneity is lacking in biological pacemakers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argüello C, Alanis J, Pantoja O, Valenzuela B (1986) Electrophysiological and ultrastructural study of the atrioventricular canal during the development of the chick embryo. J Mol Cell Cardiol 18:499–510

    Article  Google Scholar 

  2. Argüello C, Alanis J, Valenzuela B (1988) The early development of the atrioventricular node and bundle of His in the embryonic chick heart. An electrophysiological and morphological study. Development 102:623–637

    Google Scholar 

  3. Barry A (1942) The intrinsic pulsation rates of fragments of the embryonic chick heart. J Exp Zool 91:119–130

    Article  Google Scholar 

  4. Biel M, Schneider A, Wahl C (2002) Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 12:206–213

    Article  Google Scholar 

  5. Bleeker WK, Mackaay AJC, Masson-Pe’vet M, Bouman LN, Becker AE (1980) Functional and morphological organization of the rabbit sinus node. Circ Res 46:11–22

    Google Scholar 

  6. Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687

    Article  Google Scholar 

  7. Canale ED, Campbell GR, Smolich JJ, Campbell JH (1986) Cardiac muscle. Springer, Berlin

    Google Scholar 

  8. Christoffels VM, Burch JB, Moorman AFM (2004) Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med 14: 301–307

    Article  Google Scholar 

  9. Cirklin JK, Young JB, McGiffin DC (2002) Physiology of the transplanted heart. In: Cirklin JK, Young JB, McGiffin DC (eds) Heart transplantation. Churchill Livingstone, New York, pp 353–372

    Google Scholar 

  10. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJG, Verkerk AO, de Groot JR, Bhuiyan Z, Bezzina CR, Veldkamp MW, Linnenbank AC, van der Wal AC, Tan HL, Brugada P, Wilde AAM, de Bakker JMT (2005) Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation 112:2769–2777

    Article  Google Scholar 

  11. Coronel R, Berecki G, Opthof T (2006) Why the Brugada syndrome is not yet a disease: syndromes, diseases and genetical causality. Cardiovasc Res 72:361–363

    Article  Google Scholar 

  12. Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS (1996) Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 78:15–25

    Google Scholar 

  13. De Boer TP, van Veen TAB, Houtman AJ, Jansen JA, van Amersfoorth SC, Doevendans PA, Vos MA, van der Heyden MAG (2007) Inhibition of cardiomyocyte automaticity by electrotonic application of inward rectifier current from Kir2.1 expressing cells. Med Biol Eng Comput (this issue). DOI 10.1007/s11517-006-0059-8

    Google Scholar 

  14. De Jong F, Geerts WJC, Lamers WH, Los JA, Moorman AFM (1987) Isomyosin expression patterns in tubular stages of chicken heart development: a 3-D immunohistochemical analysis. Anat Embryol 177:81–90

    Article  Google Scholar 

  15. De Jong F, Opthof T, Wilde AAM, Janse MJ, Charles R, Lamers WH, Moorman AFM (1992) Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 71:240–250

    Google Scholar 

  16. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 55:451–467

    Article  Google Scholar 

  17. Donald DE, Shephard JT (1963) Response to exercise in dogs with cardiac denervation. Am J Physiol 205:494–500

    Google Scholar 

  18. Duivenvoorden JJ, Bouman LN, Opthof T, Bukauskas FF, Jongsma HJ (1992) Effect of transmural vagal stimulation on electrotonic current spread in the rabbit sinoatrial node. Cardiovasc Res 26:678–686

    Google Scholar 

  19. Edelberg JM, Aird WC, Rosenberg RD (1998) Enhancement of murine cardiac chronotropy by the molecular transfer of the human β2 adrenergic receptor cDNA. J Clin Invest 101:337–343

    Google Scholar 

  20. Edelberg JM, Huang DT, Josephson ME, Rosenberg RD (2001) Molecular enhancement of procine cardiac chronotropy. Heart 86:559–562

    Article  Google Scholar 

  21. Fano G, Badano F (1890) Etude physiologique des premiers stades dedévelopement du coeur embryonaire du poulet. Arch Ital Biol 13:387–422

    Google Scholar 

  22. Fedorov VV, Hucker WJ, Dobrzynski H, Rosenshtraukh LV, Efimov IR (2006) Postganglionic nerve stimulation induces temporal inhibition of excitability in the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol 291:H612–H623

    Article  Google Scholar 

  23. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  24. Hescheler J, Fleischman BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, Addicks K (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36:149–162

    Article  Google Scholar 

  25. Hoogaars WMH, Tessari A, Moorman AFM, De Boer PAJ, Hagoort J, Soufan AT, Campione M, Christoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    Article  Google Scholar 

  26. Irisawa H, Brown HF, Giles W (1993) Cardiac pacemaking in the sinoatrial node. Physiol Rev 73:197–227

    Google Scholar 

  27. Kirchhof CJHJ, Bonke FIM, Allessie MA, Lammers WJ (1987) The influence of the atrial myocardium on impulse formation in the rabbit sinus node. Pflügers Arch 410:198–203

    Article  Google Scholar 

  28. Kodama I, Boyett MR (1985) Regional differences in the electrical activity of the rabbit sinus node. Pflügers Arch 404:214–226

    Article  Google Scholar 

  29. Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445

    Google Scholar 

  30. Liu W, Yasui K, Arai A, Kamiya K, Cheng J, Kodama I, Toyama J (1999) β-Adrenergic modulation of L-type Ca2+ channel currents in early stage embryonic mouse heart. Am J Physiol 276:H608–H613

    Google Scholar 

  31. Mackaay AJC, Opthof T, Bleeker WK, Jongsma HJ, Bouman LN (1980) Interaction of adrenaline and acetylcholine on cardiac pacemaker function. J Pharmacol Exp Ther 214:417–422

    Google Scholar 

  32. Mackaay AJC, Opthof T, Bleeker WK, Jongsma HJ, Bouman LN (1982) Interaction of adrenaline and acetylcholine on sinus node function. In: Bouman LN, Jongsma HJ (eds) Cardiac rate and rhythm. Martinus Nijhoff, The Hague, pp 507–523

    Google Scholar 

  33. Masson-Pévet M, Jongsma HJ, Bleeker WK, Tsjernina L, van Ginneken ACG, Treijtel BW, Bouman LN (1982) Intact isolated sinus node cells from the adult rabbit heart. J Mol Cell Cardiol 14:295–299

    Article  Google Scholar 

  34. Meda E, Ferroni A (1959) Early functional differentiation of heart muscle cells. Experientia 15:427–428

    Article  Google Scholar 

  35. Meregalli PG, Wilde AAM, Tan HL (2005) Pathophysio logical mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc Res 67: 367–378

    Article  Google Scholar 

  36. Michaels DC, Matyas EP, Jalife J (1987) Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circ Res 61:704–714

    Google Scholar 

  37. Moorman AFM, De Jong F, Denyn MMFJ, Lamers WH (1998) Development of the cardiac conduction system. Circ Res 82:629–644

    Google Scholar 

  38. Mummery C, Ward-Van Oostwaard D, Doevendans P, Spijker R, Van Den Brink S, Hassink R, Van Der Heyden M, Opthof T, Pera M, Brutel De La Riviere A, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes. Role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  Google Scholar 

  39. Opthof T, Bleeker WK, Masson Pevet M, Jongsma HJ, Bouman LN (1983a) Little-excitable transitional cells in the rabbit sinoatrial node: a statistical, morphological and electrophysiological study. Experientia 39:1099–1101

    Article  Google Scholar 

  40. Opthof T, Mackaay AJC, Bleeker WK, Jongsma HJ, Bouman LN (1983b) Cycle length dependence of the chronotropic effects of adrenaline and acetylcholine in the rabbit sinoatrial node. J Autonom Nerv Syst 8:193–204

    Article  Google Scholar 

  41. Opthof T, Duivenvoorden JJ, VanGinneken ACG, Jongsma HJ, Bouman LN (1986) Electrophysiological effects of alinidine (St 567) on sinoatrial node fibers in the rabbit heart. Cardiovasc Res 20:727–739

    Article  Google Scholar 

  42. Opthof T, De Jonge B, Jongsma HJ, Bouman LN (1987a) Functional morphology of the mammalian sinuatrial node. Eur Heart J 8:1249–1259

    Google Scholar 

  43. Opthof T, Van Ginneken ACG, Bouman LN, Jongsma HJ (1987b) The intrinsic cycle length in small pieces isolated from the rabbit sinoatrial node. J Mol Cell Cardiol 19: 923–934

    Article  Google Scholar 

  44. Opthof T (1988) The mammalian sinoatrial node. Cardiovasc Drugs Ther 1:573–597

    Article  Google Scholar 

  45. Opthof T (1998) The membrane current (I f) in human atrial cells. Implications for atrial arrhythmias. Cardiovasc Res 38:537–540

    Article  Google Scholar 

  46. Patten BM, Kramer TC (1933) The initiation of contraction in the embryonic chick heart. Am J Anat 53:349–375

    Article  Google Scholar 

  47. Plotnikov AN, Sosunov EA, Qu J, Shalpakova IN, Anyukhovsky EP, Liu L, Janse MJ, Brink PR, Cohen IS, Robinson RB, Danilo P, Rosen MR (2004) Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109:506–512

    Article  Google Scholar 

  48. Potapova I, Plotnikov A, Lu Z, Danilo P, Valiunas V, Qu J, Doronin S, Zuckerman J, Shalapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  Google Scholar 

  49. Powell T, Twist VW (1976) A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Comm 72:327–333

    Article  Google Scholar 

  50. Qu J, Plotnikov AN, Danilo P, Shlapakova I, Cohen IS, Robinson RB, Rosen MR (2003) Expression and function of a biological pacemaker in canine heart. Circulation 107:1106–1109

    Article  Google Scholar 

  51. Ramanathan C, Jia P, Ghanem R, Ryu K, Rudy Y (2006) Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA 103:6309–6314

    Article  Google Scholar 

  52. Rocchetti M, Malfatto G, Lombardi F, Zaza A (2000). Role of the input/output relation of sinoatrial myocytes in cholinergic modulation of heart rate variability. J Cardiovasc Electrophysiol 11:522–530

    Article  Google Scholar 

  53. Rosen MR, Brink PR, Cohen IS, Robinson RB (2007) Biological pacemakers based on I f. Med Biol Eng Comput (this issue)

    Google Scholar 

  54. Sabin FR (1917) Origin and development of the primitive vessels of the chick and the pig. Carnegie Cont Embryol 6:61–124

    Google Scholar 

  55. Sanders E, De Groot IJM, Geerts WJC, De Jong F, Van Horssen AA, Los JA, Moorman AFM (1986) The local expression of adult chicken heart myosins during development. Anat Embryol 174:187–193

    Article  Google Scholar 

  56. Satoh H, Sperelakis N (1993) Hyperpolarization activated inward current in embryonic chick cardiac myocytes: developmental changes and modulation by isoproterenol and carbachol. Eur J Pharmacol 240:283–290

    Article  Google Scholar 

  57. Takahashi N, Zipes DP (1983) Vagal modulation of adrenergic effects of canine sinus and atrioventricular nodes. Am J Physiol 244:H775–H781

    Google Scholar 

  58. Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B, Robinson RB, Rosen MR, Brink PR, Cohen IS (2004) Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol 555:617–626

    Article  Google Scholar 

  59. Van Mierop LHS (1967) Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212:H407–H415

    Google Scholar 

  60. Van Mierop LHS (1979) Morphological development of the heart. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology, Sect. 2, vol 1. The heart. Williams and Wilkins Co., Baltimore, pp 1–28

    Google Scholar 

  61. Veldkamp MW, Van Ginneken ACG, Opthof T, Bouman LN (1995) Human delayed rectifier. Circulation 92:3497–3504

    Google Scholar 

  62. Verheijck EE, van Ginneken ACG, Bourier J, Bouman LN (1995) Effects of delayed rectifier current blockade by E-4031 on impulse generation in single sinoatrial nodal myocytes of the rabbit. Circ Res 76:607–615

    Google Scholar 

  63. Verheijck EE, Wessels A, Van Ginneken ACG, Bourier J, Markman MWM, Vermeulen LJM, De Bakker JMT, Lamers WH, Opthof T, Bouman LN (1998) Distribution of atrial and nodal cells within the rabbit sinoatrial node. Models of sinoatrial transition. Circulation 97:1623–1631

    Google Scholar 

  64. Verheijck EE, van Ginneken ACG, Wilders R, Bouman LN (1999) Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. Am J Physiol 276:H1064–H1077

    Google Scholar 

  65. Wilson RF, Laxson DD, Christensen BV, McGinn AL, Kubo SH (1993) Regional differences in sympathetic reinnervation after human orthotopic cardiac transplantation. Circulation 88:165–171

    Google Scholar 

  66. Yasui K, Liu W, Opthof T, Kada K, Lee J K, Kamiya K, Kodama I (2001) The I f current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 88:536–542

    Google Scholar 

  67. Yasui K, Niwa N, Takemura H, Opthof T, Muto T, Horiba M, Shimizu A, Lee JK, Honjo H, Kamiya K, Kodama I (2005) Pathophysiological significance of T-type calcium channels: expression of T-type Ca(2+) channels in fetal and diseased heart. J Pharmacol Sci 99:205–210

    Article  Google Scholar 

  68. Zaza A, Lombardi F (2001) Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc Res 50:434–442

    Article  Google Scholar 

  69. Zipes DP, Miyazaki T (1990) The autonomic nervous system and the heart: basis for understanding interactions and effects on arrhythmia development. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology. From cell to bedside. W.B. Saunders, Philadelphia, pp 312–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Opthof, T. (2007). Embryological Development of Pacemaker Hierarchy and Membrane Currents Related to the Function of the Adult Sinus Node: Implications for Autonomic Modulation of Biopacemakers. In: Spaan, J.A.E., Coronel, R., de Bakker, J.M.T., Zaza, A. (eds) Biopacemaking. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72110-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72110-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72109-3

  • Online ISBN: 978-3-540-72110-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics