Skip to main content

Biopacemaking: Clinically Attractive, Scientifically a Challenge

  • Chapter
Biopacemaking

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

  • 510 Accesses

Abstract

This special issue gives an overview of the current state-of-the-art of creating a bioengineered pacemaker. The subject has potential clinical interest. Indeed, electronic pacemakers currently available have several limitations, among which inadequate rate adaptation to physiological needs, problems related to the stimulating and sensing leads and infection of the pacemaker pocket, which might be overcome by a bio-pacemaker. Generation of a bio-pacemaker has also scientific interest, because it may answer the longstanding question of whether the complex structure of the sinus node is indeed a prerequisite for reliable pacemaking, or simpler structures might work as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anghel TM, Pogwizd SM (2006) Creating a cardiac pacemaker by gene therapy. Med Biol Eng Comput 45:145–155

    Article  Google Scholar 

  2. de Boer TP, van Veen TA, Houtman MJ, Jansen JA, van Amersfoorth SC, Doevendans PA, Vos MA, van der Heyden MA (2006) Inhibition of cardiomyocyte automaticity by electrotonic application of inward rectifier current from Kir2.1 expressing cells. Med Biol Eng Comput 44:537–542

    Article  Google Scholar 

  3. Cho HC, Kashiwakura Y, Marban E (2005) Conversion of non-excitable cells to self-contained biological pacemakers. Circulation 112(17):II-307

    Google Scholar 

  4. Cho HC, Kashiwakura Y, Marban E (2005) Creation of a biological pacemaker by cell fusion. Circulation 112(17): II-307

    Google Scholar 

  5. Edelberg JM, Aird WC, Rosenberg RD (1998) Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest 101:337–343

    Article  Google Scholar 

  6. Joyner RW, Wilders R, Wagner MB (2006) Propagation of pacemaker activity. Med Biol Eng Comput 45:177–187

    Article  Google Scholar 

  7. Kashiwakura Y, Cho HC, Barth AS, Azene E, Marban E (2006) Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation 114:1682–1686

    Article  Google Scholar 

  8. Marban E, Cho HC (2006) Creation of a biological pacemaker by gene or cell-based approaches. Med Biol Eng Comput 45:133–144

    Article  Google Scholar 

  9. Miake J, Marban E, Nuss HB (2003) Functional role of inward rectifier current in heart probed by Kir2.1 over expression and dominant-negative suppression. J Clin Invest 111:1529–1536

    Article  Google Scholar 

  10. Noble D, Denyer JC, Brown HF, DiFrancesco D (1992) Reciprocal role of the inward currents Ib, Na and If in controlling and stabilizing pacemaker frequency of rabbit sinoatrial node cells. Proc R Soc Lond B 250:199–207

    Article  Google Scholar 

  11. Opthof T (2006) Embryological development of pacemaker hierarchy and membrane currents related to the function of the adult sinus node. Implications for autonomic modulation of biopacemakers. Med Biol Eng Comput 45:119–132

    Article  Google Scholar 

  12. Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  Google Scholar 

  13. Rosen MR, Brink PR, Cohen IS, Robinson RB (2006) Biological pacemakers based on If. Med Biol Eng Comput 45:157–166

    Article  Google Scholar 

  14. Wilders R (2006) Computer modelling of the sinoatrial node. Med Biol Eng Comput 45:189–207

    Article  Google Scholar 

  15. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, Tomaselli GF, Li RA (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111:11–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Bakker, J.M.T., Zaza, A. (2007). Biopacemaking: Clinically Attractive, Scientifically a Challenge. In: Spaan, J.A.E., Coronel, R., de Bakker, J.M.T., Zaza, A. (eds) Biopacemaking. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72110-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72110-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72109-3

  • Online ISBN: 978-3-540-72110-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics