Skip to main content

A Bootstrap Correspondence Analysis for Factorial Microarray Experiments with Replications

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

Characterized by simultaneous measurement of the effects of experimental factors and their interactions, the economic and efficient factorial design is well accepted in microarray studies. To date, the only statistical method for analyzing microarray data obtained using factorial design has been the analysis of variance (ANOVA) model which is a gene by gene approach and relies on multiple assumptions. We introduce a multivariate approach, the bootstrap correspondence analysis (BCA), to identify and validate genes that are significantly regulated in factorial microarray experiments and show the advantages over the traditional method. Applications of our method to two microarray experiments using factorial have detected genes that are up or down-regulated due to the main experimental factors or as a result of interactions. Model comparison showed that although both BCA and ANOVA capture the main regulatory profiles in the data, our multivariate approach is more efficient in identifying genes with biological and functional significances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U S A 97, 10101–10106 (2000)

    Article  Google Scholar 

  • Bhamre, S., et al.: Intracellular reduction of selenite into glutathione peroxidase. Evidence for involvement of NADPH and not glutathione as the reductant. Molecular and Cellular Biochemistry 211, 9–17 (2000)

    Article  Google Scholar 

  • Baty, F., et al.: Analysis with respect to instrumental variables for the exploration of microarray data structure. BMC Bioinformatics 7, 422 (2006)

    Article  Google Scholar 

  • Churchill, G.A.: Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32, S490–S495 (2002)

    Article  Google Scholar 

  • Clausen, S.E.: Applied correspondence analysis: An introduction. Sage, Thousand Oaks (1988)

    Google Scholar 

  • Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1–26 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Efron, B.: Nonparametric estimates of standard error: The Jackknife, the Bootstrap and Other Methods. Biometrika 68, 589–599 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Fellenberg, K., et al.: Correspondence analysis applied to microarray data. Proc. Natl. Acad. Sci. U S A 98, 10781–10786 (2001)

    Article  Google Scholar 

  • Gabriel, K.R., Odoroff, C.L.: Biplots in biomedical research. Stat. Med. 9, 469–485 (1990)

    Article  Google Scholar 

  • Ghosh, D.: Resampling methods for variance estimation of singular value decomposition analyses from microarray experiments. Funct. Integr. Genomics 2, 92–97 (2002)

    Article  Google Scholar 

  • Glonek, G.F., Solomon, P.J.: Factorial and time course designs for cDNA microarray experiments. Biostatistics 5, 89–111 (2004)

    Article  MATH  Google Scholar 

  • Holter, N.S., et al.: Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl. Acad. Sci. U S A 97, 8409–8414 (2000)

    Article  Google Scholar 

  • Hosack, D.A., et al.: Identifying biological themes within lists of genes with EASE. Genome Biology 4, R70 (2003)

    Google Scholar 

  • Kerr, M.K., Martin, M., Churchill, G.A.: Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819–837 (2000)

    Article  Google Scholar 

  • Kerr, M.K., Churchill, G.A.: Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. U S A 98, 8961–8965 (2001)

    Article  MATH  Google Scholar 

  • Lander, E.S.: Array of hope. Nat. Genet. 21, S3–S4 (1999)

    Article  Google Scholar 

  • Li, C., Wong, W.H.: Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology 2, research0032.1-0032.11 (2001a)

    Google Scholar 

  • Li, C., Wong, W.H.: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U S A 98, 31–36 (2001b)

    Article  MATH  Google Scholar 

  • Pavlidis, P.: Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31, 282–289 (2003)

    Article  Google Scholar 

  • Scholtens, D., et al.: Analyzing factorial designed microarray experiments. Journal of Multivariate Analysis 90, 19–43 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Shaw, R., et al.: Use of factorial designs to optimize animal experiments and reduce animal use. ILAR J. 43, 223–232 (2002)

    Google Scholar 

  • Tan, Q., et al.: Correspondence analysis of microarray time-course data in case-control design. Journal of Biomedical Informatics 37, 358–365 (2004)

    Article  Google Scholar 

  • Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principle component analysis. In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds.) A Practical Approach to Microarray Data Analysis, pp. 91–109. Kluwer, Norwell (2003)

    Chapter  Google Scholar 

  • Wildsmith, S.E., et al.: Maximization of signal derived from cDNA microarrays. Biotechniques 30, 202–208 (2001)

    Google Scholar 

  • Wood, M.: Bootstrapped confidence intervals as an approach to statistical inference. Organizational Research Methods 8, 454–470 (2005)

    Article  Google Scholar 

  • Yang, Y.H., Speed, T.: Design issues for cDNA microarray experiments. Nat. Rev. Genet. 3, 579–588 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, Q., Dahlgaard, J., Abdallah, B.M., Vach, W., Kassem, M., Kruse, T.A. (2007). A Bootstrap Correspondence Analysis for Factorial Microarray Experiments with Replications. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics