Skip to main content

Genomic Signatures from DNA Word Graphs

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

Genomes have both deterministic and random aspects, with the underlying DNA sequences exhibiting features at numerous scales, from codons and cis-elements through genes and on to regions of conserved or divergent gene order. The DNA Words program aims to identify mathematical structures that characterize genomes at multiple scales. The focus of this work is the fine structure of genomic sequences, the manner in which short nucleotide sequences fit together to comprise the genome as an abstract sequence, within a graph-theoretic setting. A DNA word graph is a generalization of a de Bruijn graph that records the occurrence counts of node and edges in a genomic sequence. A DNA word graph can be derived from a genomic sequence generated by a finite Markov chain or a subsequence of a sequenced genome. Both theoretically and empirically, DNA word graphs give rise to genomic signatures. Several genomic signatures are derived from the structure of a DNA word graph, including an information-rich and visually appealing genomic bar code. Application of genomic signatures to several genomes demonstrate their practical value in identifying and distinguishing genomic sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karlin, S., Burge, C.: Dinucleotide relative abundance extremes — A genomic signature. Trends in Genetics 11(7), 283–290 (1995)

    Article  Google Scholar 

  2. Karlin, S., Mrazek, J., Campbell, A.M.: Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology 179(12), 3899–3913 (1997)

    Google Scholar 

  3. Jernigan, R.W., Baran, R.H.: Pervasive properties of the genomic signature. BMC Genomics 3 (2002)

    Google Scholar 

  4. Coenye, T., Vandamme, P.: Use of the genomic signature in bacterial classification and identification. Systematic and Applied Microbiology 27(2), 175–185 (2004)

    Article  Google Scholar 

  5. Deschavanne, P.J., et al.: Genomic signature: Characterization and classification of species assessed by chaos game representation of sequences. Molecular Biology and Evolution 16(10), 1391–1399 (1999)

    Google Scholar 

  6. Sandberg, R., et al.: Quantifying the species-specificity in genomics signatures, synonymous codon choice, amino acid usage, and G+C content. Gene 311, 35–42 (2003)

    Article  Google Scholar 

  7. Dufraigne, C., et al.: Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Research 33(1) (2005)

    Google Scholar 

  8. van Passel, M.W.J., et al.: An acquisition account of genomic islands based on genome signature comparisons. BMC Genomics 6 (2005)

    Google Scholar 

  9. Carbone, A., Kepes, F., Zinovyev, A.: Codon bias signatures, organization of micro-organisms in codon space, and lifestyle. Molecular Biology and Evolution 22(3), 547–561 (2005)

    Article  Google Scholar 

  10. Pevzner, P.A.: DNA physical mapping and alternating Eulerian cycles in colored graphs. Algorithmica 13(1-2), 77–105 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pevzner, P.A., Tang, H.X., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proceedings of The National Academy of Sciences of The United States Of America 98(17), 9748–9753 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, Y., Waterman, M.S.: An Eulerian path approach to global multiple alignment for DNA sequences. Journal of Computational Biology 10(6), 803–819 (2003)

    Article  Google Scholar 

  13. Raphael, B., et al.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Research 14(11), 2336–2346 (2004)

    Article  Google Scholar 

  14. Zhang, Y., Waterman, M.S.: An Eulerian path approach to local multiple alignment for DNA sequences. Proceedings of The National Academy of Sciences of The United States Of America 102(5), 1285–1290 (2005)

    Article  MathSciNet  Google Scholar 

  15. Fickett, J.W., Torney, D.C., Wolf, D.R.: Base compositional structure of genomes. Genomics 13(4), 1056–1064 (1992)

    Article  Google Scholar 

  16. Rosenberg, A.L., Heath, L.S.: Graph separators, with applications. In: Frontiers of Computer Science, Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  17. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. ohn Wiley & Sons Inc., New York (1968)

    Google Scholar 

  18. Waterman, M.: Introduction to Computational Biology. Academic Press Inc., Boston (1995)

    MATH  Google Scholar 

  19. Cauchy, A.L.: Cours d’analyse de l’École Royale Polytechnique. Première partie. Instrumenta Rationis. Sources for the History of Logic in the Modern Age, VII. Cooperativa Libraria Universitaria Editrice Bologna, Bologna (1992) Analyse algébrique. [Algebraic analysis], Reprint of the 1821 edition, Edited and with an introduction by Umberto Bottazzini.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heath, L.S., Pati, A. (2007). Genomic Signatures from DNA Word Graphs. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics