Skip to main content

Estimating Bacterial Diversity from Environmental DNA: A Maximum Likelihood Approach

  • Conference paper
  • 843 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Abstract

The ability to measure bacterial diversity is a prerequisite for the systematic study of bacterial biogeography and ecology. In this paper we describe a method of estimating diversity from an environmental sample of DNA and apply it to data taken from samples from the Sargasso Sea. Our approach combines the coverage depth method of Venter et al. [2] and the contig spectrum approach of Angly et al. [4], but uses maximum likelihood to recover the diversity rather than using hand-fit models as in [2]. We assume four species abundance distributions, then maximize the likelihood of fitting the coverage depth at different positions of the consensus sequence provided in the Sargasso Sea sample. The resulting estimates match well with those obtained using less mathematically rigorous approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curtis, T.P., Sloan, W.T.: Exploring Microbial Diversity - A Vast Below. Science 309, 1331–1333 (2005)

    Article  Google Scholar 

  2. Venter, J.C., et al.: Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science 304, 66–74 (2004), Supporting Online Material: www.sciencemag.org/cgi/content/full/1093857/DC1

    Article  Google Scholar 

  3. Angly, F., et al.: PHACCS, an Online Tool for Estimating the Structure and Diversity of Uncultured Viral Communities Using Metagenomic Information. BMC Bioinformatics 6(41) (2005), http://www.biomedcentral.com/147-2105/6/41

  4. Bohannan, B.J.M., Hughes, J.: New Approaches to Analyzing Microbial Biodiversity Data. Current Opinion in Microbiology 6, 282–287 (2003)

    Article  Google Scholar 

  5. Myers, G.: Whole-Genome DNA Seqencing. Computing in Science and Engineering, 33–43 (May-June 1999)

    Google Scholar 

  6. Preston, F.W.: The Commonness and Rarity of Species. Ecology 29, 254–283 (1948)

    Article  Google Scholar 

  7. Bulmer, M.G.: On Fitting the Poisson Lognormal Distribution to Species Abundance Data. Biometrics 30, 101–110 (1974)

    Article  MATH  Google Scholar 

  8. Hubbell, S.: The Unified Neutral Theroy of Biodiversity and Biogeography. Princeton University Press, Princeton (2001)

    Google Scholar 

  9. Curtis, T.P., Sloan, W.T., Scannell, J.W.: Estimating Prokaryotic Diversity and Its Limits. Proc. Natl. Acad. Sci. USA 99, 10494–10499 (2002)

    Article  Google Scholar 

  10. Dunbar, J., et al.: Empirical and Theoretical Bacterial Diversity in Four Arizona Soils. Appl. Environ. Microbiol. 68, 3035–3045 (2002)

    Article  Google Scholar 

  11. Zhou, J., et al.: Spatial and Rescource Factors Influencing High Microbial Diversity in Soil. Appl. Environ. Microbiol. 68, 326–334 (2002)

    Article  Google Scholar 

  12. Kroes, I., Lepp, P.W., Relman, D.: Bacterial Diversity Within the Human Subgingival Crevice. Proc. Natl. Acad. Sci. USA 96, 14547–14552 (1999)

    Article  Google Scholar 

  13. Hughes, J.B., et al.: Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001)

    Article  Google Scholar 

  14. Seber, G.: The Estimation of Animal Abundance and Related Parameters. Griffin, London (1973)

    MATH  Google Scholar 

  15. Krebs, C.: Ecological Methodology. Harper and Row, New York (1989)

    Google Scholar 

  16. Chao, A.: Estimating the Population Size for Capture-recapture Data with Unequal Catchability. Biometrics 43, 783–791 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Breitbart, M., et al.: Genomic Analysis of Uncultured Marine Viral Communities. Proc. Natl. Acad. Sci. USA 99, 14250–14255 (2002)

    Article  Google Scholar 

  18. Reysenbach, A., et al.: Differential Amplification of rRNA Genes by Polymerase Chain Reaction. Appl. Environ. Microbiol. 58, 3417–3418 (1992)

    Google Scholar 

  19. Suzuki, M., Giovannoni, S.: Bias caused by Template Annealing in the Amplification of Mixutures of 16S rRNA Genes by PCR. Appl. Environ. Microbiol. 62, 625–630 (1996)

    Google Scholar 

  20. Speksnijder, A., et al.: Microvariation Artefacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences. Appl. Environ. Microbiol. 67, 469–472 (2001)

    Article  Google Scholar 

  21. Jasons, G., Wolinsky, M., Dunbar, J.: Computational Improvements Reveal Great Bacterial Diversity and Hign Metal Toxicity in Soil. Science 309, 1387–1390 (2005)

    Article  Google Scholar 

  22. Falkowski, P.G., de Vargas, C.: Shotgun Sequencing in the Sea: A Blast from the Past? Science 304, 58–60 (2004)

    Article  Google Scholar 

  23. Travis, J.M., Larsen, D.R.: Meaures of Diversity. Natural Resource biometrics (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohan, F., Krizanc, D., Lu, Y. (2007). Estimating Bacterial Diversity from Environmental DNA: A Maximum Likelihood Approach. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics