Skip to main content

Abstract

Specifications and code should be structured in modules of relatively small size to facilitate understandability of large systems, increase reusability of components, and localize the effects of system changes. In Maude, these goals are achieved by means of a module algebra that supports parameterized programming techniques in the OBJ3 style [146] as well as the definition of module hierarchies, i.e., acyclic graphs of module importations; that is, each functional or system module can import other Maude modules as submodules. Since the submodule relation is transitive, we can in this way develop module hierarchies. Mathematically, we can think of such hierarchies as partial orders of theory inclusions, that is, the theory of the importing module contains the theories of its submodules as subtheories.

As in Clear [33], OBJ [146], and other specification languages in that tradition, the abstract syntax for writing specifications in Maude can be seen as given by module expressions, where the notion of module expression is understood as an expression that defines a new module out of previously de- fined modules by combining and/or modifying them according to a specific set of operations. In fact, structuring is essential in all specification languages, not only to facilitate the construction of specifications from already existing ones—with more or less flexible reusability mechanisms—but also for managing the complexity of understanding and analyzing large specifications. Maude supports module operations for summation, renaming, and instantiation of parameterized modules.

Section 8.1 introduces module importations and the different modes in which such importations can take place. Section 8.2 discusses the summation and renaming module expressions. Section 8.3 introduces parameterized programming, including the use of theories and views, the parameterization of functional and system modules, and the instantiation of parameterized modules. We refer to [98, 110, 111] for a deeper discussion on the semantics of the Maude module operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Clavel, M. et al. (2007). Module Operations. In: All About Maude - A High-Performance Logical Framework. Lecture Notes in Computer Science, vol 4350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71999-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71999-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71940-3

  • Online ISBN: 978-3-540-71999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics