Skip to main content

A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks

  • Chapter
Biology and Control Theory: Current Challenges

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 357))

Abstract

A positive dynamical system is said to be persistent if every solution that starts in the interior of the positive orthant does not approach the boundary of this orthant. For chemical reaction networks and other models in biology, persistence represents a non-extinction property: if every species is present at the start of the reaction, then no species will tend to be eliminated in the course of the reaction. This paper provides checkable necessary as well as sufficient conditions for persistence of chemical species in reaction networks, and the applicability of these conditions is illustrated on some examples of relatively high dimension which arise in molecular biology. More specific results are also provided for reactions endowed with mass-action kinetics. Overall, the results exploit concepts and tools from Petri net theory as well as ergodic and recurrence theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Angeli, P. De Leenheer, E.D. Sontag, “On the structural monotonicity of chemical reaction networks,” Proc. IEEE Conf. Decision and Control, San Diego, Dec. 2006, IEEE Publications, (2006), to appear.

    Google Scholar 

  2. D. Angeli, E.D. Sontag, “Monotone control systems,” IEEE Trans. Autom. Control 48 (2003), pages 1684–1698.

    Article  Google Scholar 

  3. D. Angeli, J.E. Ferrell, Jr., E.D. Sontag, “Detection of multi-stability, bifurcations, and hysteresis in a large class of biological positive-feedback systems,” Proceedings of the National Academy of Sciences USA 101 (2004), pages 1822–1827.

    Article  Google Scholar 

  4. D. Angeli, E.D. Sontag, “A global convergence result for strongly monotone systems with positive translation invariance,” Nonlinear Analysis Series B: Real World Applications, to appear.

    Google Scholar 

  5. J-P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, 1984.

    Google Scholar 

  6. N.P. Bhatia, G.P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.

    MATH  Google Scholar 

  7. L.A. Bunimovich, S.G. Dani, R.L. Dobrushin, et al., Dynamical Systems, Ergodic Theory and Applications, Springer-Verlag, 2000.

    Google Scholar 

  8. G. Butler, P. Waltman, “Persistence in dynamical systems,” J. Differential Equations 63 (1986), pages 255–263.

    Article  MATH  Google Scholar 

  9. G. Butler, H.I. Freedman, P. Waltman, “Uniformly persistent systems,” Proc. Am. Math. Soc. 96 (1986), pages 425–430.

    Article  MATH  Google Scholar 

  10. M. Chaves, E.D. Sontag, R.J. Dinerstein, “Steady-states of receptor-ligand dynamics: A theoretical framework,” J. Theoretical Biology 227 (2004), pages 413–428.

    Article  Google Scholar 

  11. B.L. Clarke, “Stability of complex reaction networks,” Adv. Chem. Phys. 43 (1980), pages 1–216.

    Article  Google Scholar 

  12. F. Commoner, “Deadlocks in Petri Nets,” Tech. Report, Applied Data Research Inc. Wakefield, Massachussetts (1972)

    Google Scholar 

  13. C. Conradi, J. Saez-Rodriguez, E.-D. Gilles, J. Raisch “Using chemical reaction network theory to discard a kinetic mechanism hypothesis,” in Proc. FOSBE 2005 (Foundations of Systems Biology in Engineering), Santa Barbara, Aug. 2005. pages 325–328.

    Google Scholar 

  14. P. De Leenheer, D. Angeli, E.D. Sontag, “Monotone chemical reaction networks,” J. Mathematical Chemistry (2006), to appear.

    Google Scholar 

  15. M. Feinberg, F.J.M. Horn, “Dynamics of open chemical systems and algebraic structure of underlying reaction network,” Chemical Engineering Science 29 (1974), pages 775–787.

    Article  Google Scholar 

  16. M. Feinberg, “Chemical reaction network structure and the stabiliy of complex isothermal reactors-I. The deficiency zero and deficiency one theorems,” Review Article 25, Chemical Engr. Sci. 42(1987), pp. 2229–2268.

    Article  Google Scholar 

  17. M. Feinberg, “The existence and uniqueness of steady states for a class of chemical reaction networks,” Archive for Rational Mechanics and Analysis 132 (1995), pp. 311–370.

    Article  MATH  Google Scholar 

  18. M. Feinberg, “Lectures on chemical reaction networks,” Lectures at the Mathematics Research Center, University of Wisconsin, 1979. http://www.che.eng.ohio-state.edu/~feinberg/

    Google Scholar 

  19. T.C. Gard, “Persistence in food webs with general interactions,” Math. Biosci. 51 (1980), pages 165–174.

    Article  MATH  Google Scholar 

  20. H. Genrich, R. Küffner, K. Voss, “Executable Petri net models for the analysis of metabolic pathways,” Int. J. on Software Tools for Technology Transfer (STTT) 3 (2001), pages 394–404.

    MATH  Google Scholar 

  21. M.W. Hirsch, H.L. Smith, X. Zhao, “Chain transitivity, attractivity, and strong repellors for semidynamical systems,” Journal of Dynamics and Differential Equations 13 (2001), pages 107–131.

    Article  MATH  Google Scholar 

  22. M.H.T. Hack, “Analysis of production schemata by Petri-Nets,” Master Thesis, MIT (1972)

    Google Scholar 

  23. M. Hirsch, H.L. Smith, in Handbook of Differential Equations, Ordinary Differential Equations (second volume) (A. Canada, P. Drabek, and A. Fonda, eds.), Elsevier, 2005.

    Google Scholar 

  24. J. Hofbauer, J. W.-H. So, “Uniform persistence and repellors for maps,” Proceedings of the American Mathematical Society 107 (1989), pages 1137–1142.

    Article  MATH  Google Scholar 

  25. R. Hofestädt, “A Petri net application to model metabolic processes,” Syst. Anal. Mod. Simul. 16 (1994), pages 113–122.

    MATH  Google Scholar 

  26. F.J.M. Horn, R. Jackson, “General mass action kinetics,” Arch. Rational Mech. Anal. 49 (1972), pp. 81–116.

    Article  Google Scholar 

  27. F.J.M. Horn, “The dynamics of open reaction systems,” in Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974), pp. 125–137. SIAM-AMS Proceedings, Vol. VIII, Amer. Math. Soc., Providence, 1974.

    Google Scholar 

  28. C.-Y.F. Huang, Ferrell, J.E., “Ultrasensitivity in the mitogen-activated protein kinase cascade,” Proc. Natl. Acad. Sci. USA 93 (1996), pages 10078–10083.

    Article  Google Scholar 

  29. J._G. Kemeny, A.W. Knapp, J.L. Snell and J.G. Kemeny, Denumerable Markov Chains, Graduate Texts in Mathematics, Springer-Verlag, 1976.

    Google Scholar 

  30. R. Küffner, R. Zimmer, T. Lengauer, “Pathway analysis in metabolic databases via differential metabolic display (DMD),” Bioinformatics 16 (2000), pages 825–836.

    Article  Google Scholar 

  31. A.R. Asthagiri and D.A. Lauffenburger, “A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model,” Biotechnol. Prog. 17 (2001), pages 227–239.

    Article  Google Scholar 

  32. N.I. Markevich, J.B. Hoek, B.N. Kholodenko, “Signaling switches and bistability arising from multisite phosphorilation in protein kinase cascades” Journal of Cell Biology, Vol. 164, N.3, pp. 353–359, 2004

    Article  Google Scholar 

  33. J.S. Oliveira, C.G. Bailey, J.B. Jones-Oliveira, Dixon, D.A., Gull, D.W., Chandler, M.L.A., “A computational model for the identification of biochemical pathways in the Krebs cycle,” J. Comput. Biol. 10 (2003), pages 57–82.

    Article  Google Scholar 

  34. M. Peleg, M., I. Yeh, R. Altman, “Modeling biological processes using workflow and Petri net models,” Bioinformatics 18 (2002), pages 825–837.

    Article  Google Scholar 

  35. J.L. Peterson, Petri Net Theory and the Modeling of Systems Prentice Hall, Lebanon, Indiana 1981.

    Google Scholar 

  36. C.A. Petri, Kommunikation mit Automaten Ph.D. Thesis, University of Bonn, 1962.

    Google Scholar 

  37. V.N. Reddy, M.L. Mavrovouniotis, M.N. Liebman, “Petri net representations in metabolic pathways.,” Proc. Int. Conf. Intell. Syst. Mol. Biol. 1 (1993), pages 328–336.

    Google Scholar 

  38. G. Rozenberg, W. Reisig, Lectures on Petri Nets Basic Models: Basic Models, Lecture Notes in Computer Science 1491, Springer-Verlag, 1998.

    Google Scholar 

  39. H.L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, vol. 41 (AMS, Providence, RI, 1995).

    Google Scholar 

  40. E.D. Sontag, “Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,” IEEE Trans. Autom. Control 46 (2001), pages 1028–1047. (Errata in IEEE Trans. Autom. Control 47 (2002): 705.)

    Article  MATH  Google Scholar 

  41. E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Second Edition Springer, New York 1998.

    MATH  Google Scholar 

  42. H.R. Thieme, “Uniform persistence and permanence for non-autonomous semiflows in population biology,” Math. Biosci. 166 (2000), pages 173–201.

    Article  MATH  Google Scholar 

  43. C. Widmann, G. Spencer, M.B. Jarpe, G.L. Johnson, G.L., “Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human,” Physiol. Rev. 79 (1999), pages 143–180.

    Google Scholar 

  44. I. Zevedei-Oancea, S. Schuster, “Topological analysis of metabolic networks based on Petri net theory,” In Silico Biol. 3 (2003), paper 0029.

    Google Scholar 

  45. M. Zhou, Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach World Scientific Publishing, Hong Kong, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angeli, D., De Leenheer, P., Sontag, E. (2007). A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, SI. (eds) Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71988-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71988-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71987-8

  • Online ISBN: 978-3-540-71988-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics