Skip to main content

System and Control Theory Furthers the Understanding of Biological Signal Transduction

  • Chapter
Biology and Control Theory: Current Challenges

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 357))

Abstract

This article discusses why novel modelling and analysis methods are required for biological systems, presents recent advances and outlines some future challenges. In this respect, the main focus is placed upon methods for parameter estimation and sensitivity analysis as they are encountered in systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Agrawal. New institute to study systems biology. Nat Biotechnol, 17(8):743–744, 1999.

    Article  Google Scholar 

  2. S. Audoly, G. Bellu, L. D’Angi’o, M. P. Saccomani, and C. Cobelli. Global identifiability of nonlinear models of biological systems. IEEE T Bio-med Eng, 48(1):55–65, 2001.

    Article  Google Scholar 

  3. Biomodels database. www.biomodels.net.

    Google Scholar 

  4. J. M. Carlson and J. Doyle. Complexity and robustness. Proc Natl Acad Sci USA, 99(Suppl 1):2538–2545, 2002.

    Article  Google Scholar 

  5. M. Cascante, L. G. Boros, B. Comin-Anduix, P. de Atauri, J. J. Centelles, and P. W.-N. Lee. Metabolic Control Analysis in drug discovery and disease. Nat Biotechnol, 20(3):243–249, Mar. 2002.

    Article  Google Scholar 

  6. cellML model repository. www.cellml.org/examples/repository/.

    Google Scholar 

  7. K.-H. Cho and O. Wolkenhauer. Analysis and modelling of signal transduction pathways in systems biology. Biochem Soc T, 31(6):1503–1509, 2003.

    Google Scholar 

  8. A. Citri and Y. Yarden. EGF-ERBB signalling: Towards the systems level. Nat Rev Mol Cell Biol, 7(7):505–516, 2006.

    Article  Google Scholar 

  9. C. Conradi, J. Saez-Rodriguez, E.-D. Gilles, and J. Raisch. Using chemical reaction network theory to d a kinetic mechanism hypothesis. IEE Proc Syst Biol, 152(4):243–248, 2005.

    Article  Google Scholar 

  10. A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press, 3rd edition, 2004.

    Google Scholar 

  11. E. J. Crampin, S. Schnell, and P. E. McSharry. Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog Biophys Mol Biol, 86(1):77–112, 2004.

    Article  Google Scholar 

  12. M. E. Csete and J. C. Doyle. Reverse engineering of biological complexity. Science, 295(5560):1664–1669, 2002.

    Article  Google Scholar 

  13. P. Dorato. Non-fragile controller design: an overview. In Proc. of the 1998 American Control Conf, pages 2829–2831, 1998.

    Google Scholar 

  14. T. Eißing, F. Allgöwer, and E. Bullinger. Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. IEE Proc Syst Biol, 152(4):221–228, 2005.

    Article  Google Scholar 

  15. T. Eißing, S. Waldherr, F. Allgöwer, P. Scheurich, and E. Bullinger. Response to bistability in apoptosis: Roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys. J., 2007. In press.

    Google Scholar 

  16. H. El-Samad, H. Kurata, J. C. Doyle, C. A. Gross, and M. Khammash. Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci USA, 102(8):2736–2741, 2005.

    Article  Google Scholar 

  17. H. El-Samad, H. Kurata, J. C. Doyle, C. A. Gross, and M. Khammash. Surviving heat shock: Control strategies for robustness and performance. Proc Natl Acad Sci USA, 102(8):2736–2741, 2005.

    Article  Google Scholar 

  18. M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgöwer, and P. Wellstead. Results towards identifiability properties of biochemical reaction networks. In Proc. of the 45th IEEE Conf on Decision and Control, San Diego, USA, pages 2104–2109, 2006.

    Google Scholar 

  19. D. A. Fell. Increasing the flux in metabolic pathways: A Metabolic Control Analysis perspective. Biotechnol Bioeng, 58(2–3):121–124, 1998.

    Article  Google Scholar 

  20. X.-J. Feng, S. Hooshangi, D. Chen, G. Li, R. Weiss, and H. Rabitz. Optimizing genetic circuits by global sensitivity analysis. Biophys J, 87(4):2195–2202, 2004.

    Article  Google Scholar 

  21. H. Garnier, M. Mensler, and A. Richard. Continuous-time model identification from sampled data implementation issues and performance evaluation. Int J Control, 76(13):1337–1357, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Gatermann and B. Huber. A family of sparse polynomial systems arising in chemical reaction systems. J Symb Comput, 33:275–305, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Gray, W. Hart, L. Painton, C. Phillips, M. Trahan, and J. Wagner. A survey of global optimization methods. Technical report, Sandia National Laboratories, 1997.

    Google Scholar 

  24. R. Heinrich and T. A. Rapoport. A linear steady state treatment of enzymatic chains. general properties, control and effector strength. European J of Biochemistry, 42:89–95, 1974.

    Article  Google Scholar 

  25. A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol., 117(4):500–544, 1952.

    Google Scholar 

  26. A. Hoffmann, A. Levchenko, M. L. Scott, and D. Baltimore. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science, 298:1241–1245, 2002.

    Article  Google Scholar 

  27. T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: Systems biology. Annu Rev Genomics Hum Genet, 2:343–372, 2001.

    Article  Google Scholar 

  28. B. P. Ingalls and H. M. Sauro. Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol, 222(1):23–36, 2003.

    Article  MathSciNet  Google Scholar 

  29. JWS Online. jjj.biochem.sun.ac.za.

    Google Scholar 

  30. H. Kacser and J. A. Burns. The control of flux. Symposia of the Society for Experimental Biology, 27:65–104, 1973.

    Google Scholar 

  31. A. V. Karnaukhov and E. V. Karnaukhova. Application of a new method of nonlinear dynamical system identification to biochemical problems. Biochemistry (Moscow), 68(3):253–259, 2003. Translated from Biokhimiya, Vol. 68, No. 3, 2003, pp. 309–317.

    Article  Google Scholar 

  32. J. Keener and J. Sneyd. Mathematical Physiology, volume 8 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, second edition, 2001.

    Google Scholar 

  33. B. N. Kholodenko. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 7:165–176, 2006.

    Article  Google Scholar 

  34. J. Kim, D. Bates, I. Postlethwaite, L. Ma, and P. Iglesias. Robustness analysis of biochemical network models. IEE Proc Syst Biol, 153(3):96–104, 2006.

    Article  Google Scholar 

  35. H. Kitano. Perspectives on systems biology. New Generation Computing, 18(3):199–216, 2000.

    Article  MathSciNet  Google Scholar 

  36. H. Kitano. Preface. In H. Kitano, editor, Foundations of Systems Biology, pages xiii–xv. MIT Press, Cambridge/MA, 2001.

    Google Scholar 

  37. H. Kitano. Systems biology: a brief overview. Science, 295(5560):1662–1664, 2002.

    Article  Google Scholar 

  38. H. Kitano. Systems biology: A brief overview. Science, 295:1662–1664, 2002.

    Article  Google Scholar 

  39. H. Kitano. Biological robustness. Nat Rev Genet, 5:826–837, 2004.

    Article  Google Scholar 

  40. H. Kitano. International alliances for quantitative modeling in systems biology. Mol Syst Biol, 1:2005.0007, 2005.

    Article  Google Scholar 

  41. H. Kitano. Robustness from top to bottom. Nat Genet, 38(2):133–133, 2006.

    Article  Google Scholar 

  42. E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, and S. Hohmann. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol, 23(8):975–982, 2005.

    Article  Google Scholar 

  43. M. Koffas and G. Stephanopoulos. Strain improvement by metabolic engineering: Lysine production as a case study for systems biology. Curr Opin Biotechnol, 16(3):361–366, 2005.

    Article  Google Scholar 

  44. M. Kollmann, L. Lovdok, K. Bartholomé, J. Timmer, and V. Sourjik. Design principles of a bacterial signalling network. Nature, 438(7067):504–507, 2005.

    Article  Google Scholar 

  45. H. Kurata, H. El-Samad, R. Iwasaki, H. Ohtake, J. C. Doyle, I. Grigorova, C. A. Gross, and M. Khammash. Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Comput Biol, 2(7):e59, 2006.

    Article  Google Scholar 

  46. R. Legenstein, C. Naeger, and W. Maass. What can a neuron learn with spiketiming-dependent plasticity? Neural Comput, 17(11):2337–2382, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  47. A. Levchenko. Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol Bioeng, 84(7):773–782, 2003.

    Article  Google Scholar 

  48. L. Ljung. Bode lecture: Challenges of non-linear identification. In 39th IEEE Conf on Decision and Control, Maui, Hawaii, USA, 2003.

    Google Scholar 

  49. L. Ljung and T. Glad. On global identifiability for arbitrary model parametrization. Automatica, 30(2):265–276, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  50. J. O. McInerney. Bioinformatics in a post-genomics world-the need for an inclusive approach. Pharmacogenomics J, 2(4):207–208, 2002.

    Article  MathSciNet  Google Scholar 

  51. M. D. Mesarović. Systems theory and biology—view of a theoretician. In M. D. Mesarović, editor, Systems Theory and Biology, pages 59–87. Springer Verlag, 1968.

    Google Scholar 

  52. T. Millat, E. Bullinger, J. Rohwer, and O. Wolkenhauer. Approximations and their consequences for dynamic modelling of signal transduction pathways. Math Bioscience, 2006. In press.

    Google Scholar 

  53. C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res, 13(11):2467–2474, 2003.

    Article  Google Scholar 

  54. M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano. Robustness as a measure of plausibility in models of biochemical networks. J Theor Biol, 216:19–30, 2002.

    Article  MathSciNet  Google Scholar 

  55. L. O. Murphy, S. Smith, R. H. Chen, D. C. Fingar, and J. Blenis. Molecular interpretation of ERK signal duration by immediate early gene products. Nature Cell Biol., 4:556–564, 2002.

    Google Scholar 

  56. R. D. O’Neill, J. P. Lowry, and M. Mas. Monitoring brain chemistry in vivo: Voltammetric techniques, sensors, and behavioral applications. Crit Rev Neurobiol, 12(1–2):69–127, 1998.

    Google Scholar 

  57. Physiome project models. www.physiome.org/Models/.

    Google Scholar 

  58. P. K. Polisetty, E. O. Voit, and E. P. Gatzke. Identification of metabolic system parameters using global optimization methods. Theor Biol Med Model, 3:4, 2006.

    Article  Google Scholar 

  59. M. Rehm, H. Dussmann, R. U. Janicke, J. M. Tavare, D. Kogel, and J. H. M. Prehn. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. role of caspase-3. J Biol Chem, 277(27):24506–24514, July 2002.

    Article  Google Scholar 

  60. J. C. Schöning and D. Staiger. At the pulse of time: Protein interactions determine the pace of circadian clocks. FEBS Lett, 579(15):3246–3252, 2005.

    Article  Google Scholar 

  61. E. Schrödinger. What is Life? The physical aspect of the living cell. Cambridge University Press, Cambridge, 1944.

    Google Scholar 

  62. A. B. Singer, J. W. Taylor, P. I. Barton, and W. H. Green. Global dynamic optimization for parameter estimation in chemical kinetics. J Phys Chem A, 110(3):971–976, 2006.

    Article  Google Scholar 

  63. P. Smolen, D. A. Baxter, and J. H. Byrne. Modeling circadian oscillations with interlocking positive and negative feedback loops. J Neurosci, 21(17):6644–6656, 2001.

    Google Scholar 

  64. E. Sontag. Some new directions in control theory inspired by systems biology. Syst Biol, 1(1):9–18, 2004.

    Article  Google Scholar 

  65. E. Sontag. Molecular systems biology and control. European Journal of Control, 11:396–435, 2005.

    Article  MathSciNet  Google Scholar 

  66. E. D. Sontag. Molecular systems biology and control: A qualitative-quantitative approach. In Proc. of the 44th IEEE Conf on Decision and Control and European Control Conf, ECC’05, Seville, Spain, pages 2314–2319, 2005.

    Google Scholar 

  67. J. Stelling, E. Gilles, and F. J. Doyle, III. Robustness properties of circadian clock architectures. Proc Natl Acad Sci USA, 101(36):13210–13205, 2004.

    Article  Google Scholar 

  68. J. Stelling, U. Sauer, Z. Szallasi, F. J. Doyle, and J. Doyle. Robustness of cellular functions. Cell, 118(6):675–685, 2004.

    Article  Google Scholar 

  69. J. Stelling, U. Sauer, Z. Szallasi, I. Francis J. Doyle, and J. Doyle. Robustness of cellular functions. Cell, 118:675–685, 2004.

    Article  Google Scholar 

  70. S. Streif, R. Findeisen, and E. Bullinger. Relating cross Gramians and sensitivity analysis in systems biology. In Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems, 24–28 July, Kyoto, Japan, pages 437–442, 2006.

    Google Scholar 

  71. K. V. Venkatesh, S. Bhartiya, and A. Ruhela. Multiple feedback loops are key to a robust dynamic performance of tryptophan regulation in escherichia coli. FEBS Lett, 563(1–3):234–240, 2004.

    Article  Google Scholar 

  72. G. von Dassow, E. Meir, E. M. Munro, and G. M. Odell. The segment polarity network is a robust developmental module. Nature, 406(6792):188–192, 2000.

    Article  Google Scholar 

  73. R. Wang, Z. Jing, and L. Chen. Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems. Bull Math Biol, 67(2):339–367, 2005.

    Article  MathSciNet  Google Scholar 

  74. O. Wolkenhauer. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform, 2(3):258–270, 2001.

    Article  Google Scholar 

  75. O. Wolkenhauer. Systems biology: The reincarnation of systems theory applied in biology? Brief Bioinform, 2(3):258–270, 2001.

    Article  Google Scholar 

  76. O. Wolkenhauer, S. N. Sreenath, P. Wellstead, M. Ullah, and K.-H. Cho. A systems-and signal-oriented approach to intracellular dynamics. Biochem Soc T, 33 (Pt 3):507–515, 2005.

    Article  Google Scholar 

  77. www.systems-biology.org. www.systems-biology.org/001/.

    Google Scholar 

  78. X. Xia and C. H. Moog. Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE T Automat Contr, 48(2):330–336, 2003.

    Article  MathSciNet  Google Scholar 

  79. T.-M. Yi, Y. Huang, M. Simon, and J. Doyle. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA, 97(9):4649–4653, 2000.

    Article  Google Scholar 

  80. D. E. Zak, G. E. Gonye, J. S. Schwaber, and F. J. Doyle III. Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network. Genome Res, 13(11):2396–2405, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bullinger, E., Findeisen, R., Kalamatianos, D., Wellstead, P. (2007). System and Control Theory Furthers the Understanding of Biological Signal Transduction. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, SI. (eds) Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71988-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71988-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71987-8

  • Online ISBN: 978-3-540-71988-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics